Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure

被引:71
作者
Chun, Se Min [1 ]
Hong, Yong Cheol [1 ,2 ]
Choi, Dae Hyun [1 ]
机构
[1] Natl Fus Res Inst, Plasma Technol Res Ctr, 37 Dongjansan Ro, Gunsan 54004, Jeollabuk Do, South Korea
[2] NPAC, 169-148 Gwahak Ro, Daejeon 305806, South Korea
关键词
Methane reforming; Microwave plasma; Synthesis gas; Syngas; HYDROGEN-PRODUCTION; CO2; CAPTURE; CATALYSTS; HYDROCARBONS; TECHNOLOGIES;
D O I
10.1016/j.jcou.2017.03.016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon dioxide was converted to synthesis gas (syngas) in a microwave plasma torch by methane reforming at atmospheric pressure. The microwave plasma torch converts CO2+CH4 into synthesis gas. This study examined conversion rates as a function of gas temperature for dry methane reforming. The temperature of the torch flame is measured 6760 K by making use of optical spectroscopy. The CO2/CH4 reforming can be completely converted into synthesis gas (conversions: 68.4%, CO2; 96.8%, CH4) through their reforming reactions at a microwave power of 6 kW. When the reforming gas (CO2:CH4) mole ratio was 1:1, the resulting synthesis gas (H-2:CO) mole ratio was 0.9:1.1. The H-2 and CO mass yield rates increased to 0.24 kg/h and 1.86 kg/h, respectively. Also, the energy yield are 240 g/h and 41.4 g/kWh. The CO2 microwave plasma torch not only exhibited noteworthy results for CO2 reduction and syngas production, but the H-2:CO mole ratio of the gas produced is easily controlled by adjusting the CO2:CH4 ratio during the feeding process. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 37 条
[1]   Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion [J].
Bo, Zheng ;
Yan, Jianhua ;
Li, Xiaodong ;
Chi, Yong ;
Cen, Kefa .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) :5545-5553
[2]   CO2 reforming of CH4 [J].
Bradford, MCJ ;
Vannice, MA .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01) :1-42
[3]   Hydrogen production from methanol reforming in microwave "tornado"-type plasma [J].
Bundaleska, N. ;
Tsyganov, D. ;
Saavedra, R. ;
Tatarova, E. ;
Dias, F. M. ;
Ferreira, C. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) :9145-9157
[4]   Microwave plasma-based method of hydrogen production via combined steam reforming of methane [J].
Czylkowski, Dariusz ;
Hrycak, Bartosz ;
Jasinski, Mariusz ;
Dors, Miroslaw ;
Mizeraczyk, Jerzy .
ENERGY, 2016, 113 :653-661
[5]  
Dors M., 2012, Int. J. Plasma Environ. Sci. Technol., V6, P93, DOI [10.34343/ijpest.2012.06.02.093, DOI 10.34343/IJPEST.2012.06.02.093]
[6]   The Fischer-Tropsch process: 1950-2000 [J].
Dry, ME .
CATALYSIS TODAY, 2002, 71 (3-4) :227-241
[7]  
Fridman A., 2008, PLASMA CHEM
[8]   Electronic excitation temperature profiles in an air microwave plasma torch [J].
Green, KM ;
Borrás, MC ;
Woskov, PP ;
Flores, GJ ;
Hadidi, K ;
Thomas, P .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2001, 29 (02) :399-406
[9]   Microwave plasma torches driven by surface wave applied for hydrogen production [J].
Henriques, J. ;
Bundaleska, N. ;
Tatarova, E. ;
Dias, F. M. ;
Ferreira, C. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) :345-354
[10]   Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor [J].
Hou, Zhaoyin ;
Gao, Jing ;
Guo, Jianzhong ;
Liang, Dan ;
Lou, Hui ;
Zheng, Xiaoming .
JOURNAL OF CATALYSIS, 2007, 250 (02) :331-341