The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age

被引:29
作者
Weber, Beatrice [1 ]
Wenke, Torsten [1 ]
Froemmel, Ulrike [1 ]
Schmidt, Thomas [1 ]
Heitkam, Tony [1 ]
机构
[1] Tech Univ Dresden, Dept Biol, D-01069 Dresden, Germany
关键词
Ty1-copia; LTR retrotransposon; Sirevirus; FISH; sugar beet; RETROTRANSPOSON FAMILIES; TRANSPOSABLE ELEMENTS; BAC LIBRARY; SEQUENCE; ARABIDOPSIS; RICE; DNA; RETROVIRUSES; CONSTRUCTION; ORGANIZATION;
D O I
10.1007/s10577-009-9104-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Long terminal repeat (LTR) retrotransposons are major components of plant genomes influencing genome size and evolution. Using two separate approaches, we identified the Ty1-copia retrotransposon families Cotzilla and SALIRE in the Beta vulgaris (sugar beet) genome. While SALIRE elements are similar to typical Ty1-copia retrotransposons, Cotzilla elements belong to a lineage called Sireviruses. Hallmarks of Cotzilla retrotransposons are the existence of an additional putative env-like open reading frame upstream of the 3'LTR, an extended gag region, and a frameshift separating the gag and pol genes. Detected in a c (0) t-1 DNA library, Cotzilla elements belong to the most abundant retrotransposon families in B. vulgaris and are relatively homogenous and evolutionarily young. In contrast, the SALIRE family has relatively few copies, is diverged, and most likely ancient. As revealed by fluorescent in situ hybridization, SALIRE elements target predominantly gene-rich euchromatic regions, while Cotzilla retrotransposons are abundant in the intercalary and pericentromeric heterochromatin. The analysis of two retrotransposons from the same subclass contrasting in abundance, age, sequence diversity, and localization gives insight in the heterogeneity of LTR retrotransposons populating a plant genome.
引用
收藏
页码:247 / 263
页数:17
相关论文
共 77 条
[1]  
Arumuganathan K., 1991, PLANT MOL BIOL REP, V9, P229, DOI [DOI 10.1007/BF02672073, 10.1007/BF02672073]
[2]   Mechanisms and rates of genome expansion and contraction in flowering plants [J].
Bennetzen, JL .
GENETICA, 2002, 115 (01) :29-36
[3]   GeneWise and genomewise [J].
Birney, E ;
Clamp, M ;
Durbin, R .
GENOME RESEARCH, 2004, 14 (05) :988-995
[4]  
BOEKE JD, 1989, ANNU REV MICROBIOL, V43, P403, DOI 10.1146/annurev.micro.43.1.403
[5]   Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms [J].
Brandes, A ;
HeslopHarrison, JS ;
Kamm, A ;
Kubis, S ;
Doudrick, RL ;
Schmidt, T .
PLANT MOLECULAR BIOLOGY, 1997, 33 (01) :11-21
[6]   Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution [J].
Casacuberta, JM ;
Vernhettes, S ;
Audeon, C ;
Grandbastien, MA .
GENETICA, 1997, 100 (1-3) :109-117
[7]   A transcriptionally active copia-like retroelement in Citrus limon [J].
De Felice, Bruna ;
Wilson, Robert R. ;
Argenziano, Carolina ;
Kafantaris, Ioanis ;
Conicella, Clara .
CELLULAR & MOLECULAR BIOLOGY LETTERS, 2009, 14 (02) :289-304
[8]  
de Jong JH, 1999, TRENDS PLANT SCI, V4, P258
[9]   Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens [J].
Dechyeva, D ;
Gindullis, F ;
Schmidt, T .
CHROMOSOME RESEARCH, 2003, 11 (01) :3-21
[10]   High-resolution mapping of YACs and the single-copy gene Hs1pro-1 on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization [J].
Desel, C ;
Jung, C ;
Cai, DG ;
Kleine, M ;
Schmidt, T .
PLANT MOLECULAR BIOLOGY, 2001, 45 (01) :113-122