Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels

被引:167
作者
Thiele, S. A. [1 ,2 ]
Schaefer, J. A. [2 ,3 ]
Schwierz, F. [1 ,2 ]
机构
[1] Tech Univ Ilmenau, Inst Mikro & Nanoelekt, D-98684 Ilmenau, Germany
[2] Tech Univ Ilmenau, Inst Mikro & Nanotechnologien, D-98684 Ilmenau, Germany
[3] Tech Univ Ilmenau, Inst Phys, D-98684 Ilmenau, Germany
关键词
PERFORMANCE;
D O I
10.1063/1.3357398
中图分类号
O59 [应用物理学];
学科分类号
摘要
A quasianalytical modeling approach for graphene metal-oxide-semiconductor field-effect transistors (MOSFETs) with gapless large-area graphene channels is presented. The model allows the calculation of the I-V characteristics, the small-signal behavior, and the cutoff frequency of graphene MOSFETs. It applies a correct formulation of the density of states in large-area graphene to calculate the carrier-density-dependent quantum capacitance, a steady-state velocity-field characteristics with soft saturation to describe the carrier transport, and takes the source/drain series resistances into account. The modeled drain currents and transconductances show very good agreement with experimental data taken from the literature {Meric et al., [Nat. Nanotechnol. 3, 654 (2008)] and Kedzierski et al., [IEEE Electron Device Lett. 30, 745 (2009)]}. In particular, the model properly reproduces the peculiar saturation behavior of graphene MOSFETs with gapless channels. (c) 2010 American Institute of Physics. [doi:10.1063/1.3357398]
引用
收藏
页数:8
相关论文
共 33 条
[1]   Electron transport and full-band electron-phonon interactions in graphene [J].
Akturk, Akin ;
Goldsman, Neil .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (05)
[2]   Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors [J].
Basu, D. ;
Gilbert, M. J. ;
Register, L. F. ;
Banerjee, S. K. ;
MacDonald, A. H. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[3]   High-field transport and velocity saturation in graphene [J].
Chauhan, Jyotsna ;
Guo, Jing .
APPLIED PHYSICS LETTERS, 2009, 95 (02)
[4]   Dielectric Screening Enhanced Performance in Graphene FET [J].
Chen, Fang ;
Xia, Jilin ;
Ferry, David K. ;
Tao, Nongjian .
NANO LETTERS, 2009, 9 (07) :2571-2574
[5]   Diffusive charge transport in graphene on SiO2 [J].
Chen, J. -H. ;
Jang, C. ;
Ishigami, M. ;
Xiao, S. ;
Cullen, W. G. ;
Williams, E. D. ;
Fuhrer, M. S. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1080-1086
[6]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[7]  
CHEN Z, 2008, INT EL DEV M
[8]   Carrier statistics and quantum capacitance of graphene sheets and ribbons [J].
Fang, Tian ;
Konar, Aniruddha ;
Xing, Huili ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 91 (09)
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Tight-binding energy dispersions of armchair-edge graphene nanostrips [J].
Gunlycke, D. ;
White, C. T. .
PHYSICAL REVIEW B, 2008, 77 (11)