Regulating the Molecular Interactions in Polymer Binder for High-Performance Lithium-Sulfur Batteries

被引:91
作者
Gong, Qi [1 ]
Hou, Lei [1 ]
Li, Tianyu [2 ]
Jiao, Yucong [1 ]
Wu, Peiyi [1 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Div Energy Storage, Dalian 116023, Peoples R China
基金
上海市自然科学基金; 美国国家科学基金会;
关键词
lithium-sulfur batteries; polymer binder; molecular design; high sulfur loading; polysulfide adsorption and redox; LONG-LIFE; ELECTROLYTE; CONVERSION;
D O I
10.1021/acsnano.2c03059
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymer binders have been shown to efficiently conquer the notorious lithium polysulfide (UPS) shuttle effects in lithium-sulfur (Li-S) batteries for years, but more study is needed. Herein, a water dispersible and molecular interaction regulated polymer binder (PNAVS) for Li-S batteries was elaborately designed by co-polymerizing N-acryloyl glycinamide and 3-(1-vinyl-3-imidazolio)propanesulfonate. We demonstrate that by modulating the multiple interactions between the functional groups through copolymerization the binder was able to coordinate the LiPSs with higher binding energy for shuttle effect alleviation and cycling performance improvement. In addition, the Li* diffusion coefficient is also optimized in the PNAVS binder, which facilitates acceleration of the redox kinetics during cycling. Consequently, the PNAVS binder renders the Li-S battery with an ultrastable open circuit voltage for more than 3000 h. Even with a high sulfur loading of 11.7 mg cm(-2), the battery can still exhibit excellent areal capacity of 12.21 mA h cm(-2). As proof of concept, a pouch cell was also demonstrated with the stable cycling performance for 110 cycles. The binder engineering strategy in this work will propel the practical applications of high-performance batteries.
引用
收藏
页码:8449 / 8460
页数:12
相关论文
共 50 条
  • [21] Influence of different binder materials on the performance of lithium-sulfur batteries
    Li, Lin-Yan
    Cui, Xiao-Lan
    Shan, Zhong-Qiang
    Tian, Jian-Hua
    Liu, Xiao-Yan
    Gongneng Cailiao/Journal of Functional Materials, 2014, 45 (11): : 11087 - 11090
  • [22] Ultrafast Strategy to Fabricate Sulfur Cathodes for High-Performance Lithium-Sulfur Batteries
    Liu, Kun
    Yuan, Huimin
    Wang, Xinyang
    Ye, Peiyuan
    Lu, Binda
    Zhang, Junjie
    Lu, Wang
    Jiang, Feng
    Gu, Shuai
    Chen, Jingjing
    Yan, Chunliu
    Li, Yingzhi
    Xu, Zhenghe
    Lu, Zhouguang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (26) : 31478 - 31490
  • [23] Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries
    Choi, Sinho
    Su, Dawei
    Shin, Myoungsoo
    Park, Soojin
    Wang, Guoxiu
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (05) : 568 - 576
  • [24] A PEG-grafted carbon hybrid as sulfur host for high-performance lithium-sulfur batteries
    Guo, Jin
    Zhang, Mingang
    Yan, Xiaoyan
    Yao, Shushan
    Cao, Xiangyu
    Liu, Jiansheng
    JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (04)
  • [25] A Freestanding Hollow Carbon Nanosphere as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries
    Xiang, Kaixiong
    Wang, Xianyou
    Chen, Han
    Hu, Jun
    Shu, Hongbo
    Chen, Manfang
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (08) : 1180 - 1184
  • [26] Vanadium Sulfide@Sulfur Composites as High-Performance Cathode for Advanced Lithium-Sulfur Batteries
    Chen, Xiaojuan
    Du, Gaohui
    Zhang, Miao
    Kalam, Abul
    Ding, Shukai
    Su, Qingmei
    Xu, Bingshe
    Al-Sehemi, Abdullah G.
    ENERGY TECHNOLOGY, 2020, 8 (03)
  • [27] Chemical anchor of lithium polysulfide through sulfur copolymers for high-performance lithium-sulfur batteries
    Zhu, Mengqi
    Zhao, Huaqi
    Quan, Kechun
    Chen, Huiduan
    Zhang, Shasha
    Yi, Huiping
    Zhang, Jindan
    ELECTROCHIMICA ACTA, 2024, 474
  • [28] Molecular Electrocatalysts in Lithium-Sulfur Batteries
    Wang, Zhihua
    Ke, Junru
    Rui, Zixin
    Xu, Li
    Li, Gaoran
    Ji, Hua
    Zhu, He
    Lan, Si
    CHEMSUSCHEM, 2024,
  • [29] Lithium-Sulfur Batteries: The Effect of High Sulfur Loading on the Electrochemical Performance
    Cha, Eunho
    Patel, Mumukshu D.
    Choi, Tae-Youl
    Choi, Wonbong
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 295 - 302
  • [30] Boosting High-Performance in Lithium-Sulfur Batteries via Dilute Electrolyte
    Wu, Feixiang
    Chu, Fulu
    Ferrero, Guillermo A.
    Sevilla, Marta
    Fuertes, Antonio B.
    Borodin, Oleg
    Yu, Yan
    Yushin, Gleb
    NANO LETTERS, 2020, 20 (07) : 5391 - 5399