WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION AT THE CRITICAL REGULARITY

被引:1
作者
Kishimoto, Nobu [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
INITIAL-VALUE PROBLEM; SCHRODINGER-EQUATION; ILL-POSEDNESS; DEVRIES EQUATION; KDV;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for the nonperiodic KdV equation is shown by the iteration method to be locally well-posed in H(-3/4)(R). In particular, solutions are unique in the whole Banach space for the iteration. This extends the previous well-posedness result in H(s), s > -3/4 obtained by Kenig, Ponce and Vega (1996) to the limiting case, and improves the existence result in H(-3/4) given by Christ, Colliander and Tao (2003). Our result immediately yields global well-posedness for the KdV equation in H(-3/4)(R) and for the modified KdV equation in H(1/4)(R), combined with the argument of Colliander, Keel, Staffilani, Takaoka and Tao (2003).
引用
收藏
页码:447 / 464
页数:18
相关论文
共 19 条
[1]   Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation [J].
Bejenaru, I ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :228-259
[2]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[3]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107, DOI 10.1007/BF01896020
[4]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209, DOI [/10.1007/BF01895688, DOI 10.1007/BF01895688]
[5]  
Christ M, 2003, AM J MATH, V125, P1235
[6]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749
[7]  
Colliander J., 2001, Electron. J. Differ. Equ, V2001, P1
[8]  
De Vries G., 1895, Lond. Edinb. Dublin Philos. Mag. J. Sci., V39, P422, DOI [10.1080/14786449508620739, DOI 10.1080/14786449508620739]
[9]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[10]  
GUO Z, ARXIV08103445