Development and Validation of an Interpretable Artificial Intelligence Model to Predict 10-Year Prostate Cancer Mortality

被引:10
作者
Bibault, Jean-Emmanuel [1 ,2 ]
Hancock, Steven [3 ]
Buyyounouski, Mark K. [3 ]
Bagshaw, Hilary [3 ]
Leppert, John T. [4 ]
Liao, Joseph C. [4 ]
Xing, Lei [3 ]
机构
[1] Stanford Univ, Lab Artificial Intelligence Med & Biomed Phys, Sch Med, Stanford, CA 94304 USA
[2] Hop Europeen Georges Pompidou, AP HP, Radiat Oncol Dept, F-75015 Paris, France
[3] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Urol, Sch Med, Stanford, CA 94305 USA
关键词
prostate cancer; artificial intelligence; machine learning; prediction; RANDOMIZED PROSTATE; RADIATION-THERAPY; TRIAL; LUNG;
D O I
10.3390/cancers13123064
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary This article presents a gradient-boosted model that can predict 10-year prostate cancer mortality with high accuracy. The model was developed and validated on prospective multicenter data from the PLCO trial. Using XGBoost and Shapley values, it provides interpretability to understand its prediction. It can be used online to provide predictions and support informed decision-making in PCa treatment. Prostate cancer treatment strategies are guided by risk-stratification. This stratification can be difficult in some patients with known comorbidities. New models are needed to guide strategies and determine which patients are at risk of prostate cancer mortality. This article presents a gradient-boosting model to predict the risk of prostate cancer mortality within 10 years after a cancer diagnosis, and to provide an interpretable prediction. This work uses prospective data from the PLCO Cancer Screening and selected patients who were diagnosed with prostate cancer. During follow-up, 8776 patients were diagnosed with prostate cancer. The dataset was randomly split into a training (n = 7021) and testing (n = 1755) dataset. Accuracy was 0.98 (+/- 0.01), and the area under the receiver operating characteristic was 0.80 (+/- 0.04). This model can be used to support informed decision-making in prostate cancer treatment. AI interpretability provides a novel understanding of the predictions to the users.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Prostate Cancer Screening in the Randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: Mortality Results after 13 Years of Follow-up [J].
Andriole, Gerald L. ;
Crawford, E. David ;
Grubb, Robert L., III ;
Buys, Saundra S. ;
Chia, David ;
Church, Timothy R. ;
Fouad, Mona N. ;
Isaacs, Claudine ;
Kvale, Paul A. ;
Reding, Douglas J. ;
Weissfeld, Joel L. ;
Yokochi, Lance A. ;
O'Brien, Barbara ;
Ragard, Lawrence R. ;
Clapp, Jonathan D. ;
Rathmell, Joshua M. ;
Riley, Thomas L. ;
Hsing, Ann W. ;
Izmirlian, Grant ;
Pinsky, Paul F. ;
Kramer, Barnett S. ;
Miller, Anthony B. ;
Gohagan, John K. ;
Prorok, Philip C. .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2012, 104 (02) :125-132
[2]   Mortality Results from a Randomized Prostate-Cancer Screening Trial [J].
Andriole, Gerald L. ;
Grubb, Robert L., III ;
Buys, Saundra S. ;
Chia, David ;
Church, Timothy R. ;
Fouad, Mona N. ;
Gelmann, Edward P. ;
Kvale, Paul A. ;
Reding, Douglas J. ;
Weissfeld, Joel L. ;
Yokochi, Lance A. ;
Crawford, E. David ;
O'Brien, Barbara ;
Clapp, Jonathan D. ;
Rathmell, Joshua M. ;
Riley, Thomas L. ;
Hayes, Richard B. ;
Kramer, Barnett S. ;
Izmirlian, Grant ;
Miller, Anthony B. ;
Pinsky, Paul F. ;
Prorok, Philip C. ;
Gohagan, John K. ;
Berg, Christine D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (13) :1310-1319
[3]   Discuss prostate cancer screening with your doctor [J].
不详 .
LANCET, 2017, 389 (10079) :1582-1582
[4]  
[Anonymous], 2015, Emergency response workers and employers
[5]  
[Anonymous], CANC DAT ACC SYST
[6]   Prostate cancer [J].
Barnett, Richard .
LANCET, 2018, 392 (10151) :908-908
[7]   Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer (vol 8, 12611, 2018) [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Housset, Martin ;
Durdux, Catherine ;
Taieb, Julien ;
Berger, Anne ;
Coriat, Romain ;
Chaussade, Stanislas ;
Dousset, Bertrand ;
Nordlinger, Bernard ;
Burgun, Anita .
SCIENTIFIC REPORTS, 2018, 8
[8]   Re: Prostate Cancer Screening in the Randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: Mortality Results after 13 Years of Follow-up [J].
Braillon, Alain ;
Dubois, Gerard .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2012, 104 (10) :793-793
[9]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794