Focussed electron beam induced deposition of platinum plasmonic antennae

被引:0
作者
Heffernan, Ashleigh H. [1 ]
Stavrevski, Daniel [1 ]
Maksymov, Ivan [1 ]
Kostecki, Roman [2 ,3 ]
Ebendorff-Heidepriem, Heike [2 ,3 ]
Greentree, Andrew D. [1 ]
Gibson, Brant C. [1 ]
机构
[1] RMIT Univ, ARC Ctr Excellence Nanoscale BioPhoton CNBP, Sch Sci, Melbourne, Vic 3001, Australia
[2] Univ Adelaide, ARC Ctr Excellence Nanoscale BioPhoton CNBP, Adelaide, SA 5005, Australia
[3] Univ Adelaide, IPAS, North Terrace, Adelaide, SA 5005, Australia
来源
ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS XI | 2018年 / 10544卷
基金
澳大利亚研究理事会;
关键词
Focussed electron beam induced deposition; FEBID; optical fibre; plasmonics; platinum; MICROSTRUCTURED OPTICAL-FIBERS; ION-BEAM; COLLOIDAL PLATINUM; NANOPARTICLES; TECHNOLOGY; ABSORPTION; GOLD; FUEL;
D O I
10.1117/12.2289380
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The direct write of photonic elements onto substrates presents opportunities for rapid prototyping and novel sensing architectures in domains inaccessible to traditional lithography. In particular, focussed electron beam induced deposition (FEBID) of platinum is a convenient technology for such direct-write applications with the advantage of relatively controlled deposition parameters and sub-10 nm resolution. One issue for FEBID of platinum is that the precursor gas contains a relatively high carbon content, which in turn leads to carbonaceous deposits in the final structure. Here we explore the creation of plasmonic nanoantennae using FEBID platinum. We compare as-deposited and annealed antenna with heights of 40 nm and 56 nm, showing the effect of annealing on the carbon concentration and hence the optical properties. These results are compared with modelling using Mie scattering theory. Our results show that FEBID platinum is a useful material for the direct-write of plasmonic nanoantenna.
引用
收藏
页数:7
相关论文
共 35 条
[1]  
Bohren C. F., 2007, ABSORPTION SCATTERIN, P491
[2]   Purification of platinum and gold structures after electron-beam-induced deposition [J].
Botman, A. ;
Mulders, J. J. L. ;
Weemaes, R. ;
Mentink, S. .
NANOTECHNOLOGY, 2006, 17 (15) :3779-3785
[3]  
Bragaru A, 2010, INT SEMICONDUCT CON, P95, DOI 10.1109/SMICND.2010.5650265
[4]  
Cordoba Castillo R., 2014, THESIS
[5]   Plasmonic nanoparticle-functionalized exposed-core fiber-an optofluidic refractive index sensing platform [J].
Doherty, Brenda ;
Thiele, Matthias ;
Warren-Smith, Stephen ;
Schartner, Erik ;
Ebendorff-Heidepriem, Heike ;
Fritzsche, Wolfgang ;
Schmidt, Markus A. .
OPTICS LETTERS, 2017, 42 (21) :4395-4398
[6]   Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles [J].
Gharibshahi, Elham ;
Saion, Elias .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (11) :14723-14741
[7]   MECHANISM OF LIQUID-METAL ELECTRON AND ION SOURCES [J].
GOMER, R .
APPLIED PHYSICS, 1979, 19 (04) :365-375
[8]   Growth of plasmonic gold nanostructures by electron beam induced deposition [J].
Graells, S. ;
Alcubilla, R. ;
Badenes, G. ;
Quidant, R. .
APPLIED PHYSICS LETTERS, 2007, 91 (12)
[9]   Direct Growth of Optical Antennas Using E-Beam-Induced Gold Deposition [J].
Graells, Simo ;
Acimovic, Srdjan ;
Volpe, Giorgio ;
Quidant, Romain .
PLASMONICS, 2010, 5 (02) :135-139
[10]   ABSORPTION-SPECTRUM AND SOME CHEMICAL-REACTIONS OF COLLOIDAL PLATINUM IN AQUEOUS-SOLUTION [J].
HENGLEIN, A ;
ERSHOV, BG ;
MALOW, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (38) :14129-14136