p-adic Hodge theory and values of zeta functions of modular forms

被引:0
作者
Kato, K [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto, Japan
关键词
modular form; Euler system; Selmer group; reciprocity law; p-adic zeta function; elliptic curve;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If f is a modular form, we construct an Euler attached to f from which we deduce bounds for the Selmer groups of f. An explicit reciprocity Law links this Elder system to the p-adic zeta function of f which allows us to prove a divisibility statement towards Iwasawa's main conjecture for f and to obtain lower bounds for the order of vanishing of this p-adic zeta functions. In particular, if f is associated to an elliptic curve E defined over Q, we prove that the p-adic zeta function of f has a zero at s = 1 of order at least the rank of the group of rational points on E.
引用
收藏
页码:117 / 290
页数:174
相关论文
共 77 条
[21]  
FONTAINE JM, 1994, ASTERISQUE, P113
[22]  
Greenberg R., 1989, LONDON MATH SOC LECT, V153, P211
[23]  
Greenberg R., 1989, ADV STUDIES PURE MAT, V17, P97
[24]   GENERAL SELMER GROUPS AND CRITICAL-VALUES OF HECKE L-FUNCTIONS [J].
GUO, L .
MATHEMATISCHE ANNALEN, 1993, 297 (02) :221-233
[25]  
HYODO O, 1994, ASTERISQUE, P221
[26]   ZL-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS [J].
IWASAWA, K .
ANNALS OF MATHEMATICS, 1973, 98 (02) :246-326
[27]  
Karl R., 1998, LONDON MATH SOC LECT, V254, P351
[28]  
Kato K., 1993, Kodai Math. J., V16, P1
[29]  
KATO K, 1999, KODAI MATH J, V22, P313, DOI DOI 10.2996/KMJ/1138044090.MR1727298
[30]  
Kato K., 1993, Lecture Notes in Math, V1553, P50