p-adic Hodge theory and values of zeta functions of modular forms

被引:0
作者
Kato, K [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto, Japan
关键词
modular form; Euler system; Selmer group; reciprocity law; p-adic zeta function; elliptic curve;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If f is a modular form, we construct an Euler attached to f from which we deduce bounds for the Selmer groups of f. An explicit reciprocity Law links this Elder system to the p-adic zeta function of f which allows us to prove a divisibility statement towards Iwasawa's main conjecture for f and to obtain lower bounds for the order of vanishing of this p-adic zeta functions. In particular, if f is associated to an elliptic curve E defined over Q, we prove that the p-adic zeta function of f has a zero at s = 1 of order at least the rank of the group of rational points on E.
引用
收藏
页码:117 / 290
页数:174
相关论文
共 77 条
[1]  
[Anonymous], 1973, Lecture Notes in Math.
[2]   MODULAR-FORMS IN CHARACTERISTIC-L AND SPECIAL VALUES OF THEIR L-FUNCTIONS [J].
ASH, A ;
STEVENS, G .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (03) :849-868
[3]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[4]  
Beilinson A., 1985, J SOVIET MATH, V30, P2036, DOI [10.1007/BF02105861, DOI 10.1007/BF02105861]
[5]  
Bloch S., 1990, PROGR MATH, P333, DOI 10.1007/978-0-8176-4574-8_9
[6]  
BLOCH S, 1986, PUBL MATH-PARIS, V63, P107
[7]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[8]   CONJECTURE OF BIRCH AND SWINNERTON-DYER [J].
COATES, J ;
WILES, A .
INVENTIONES MATHEMATICAE, 1977, 39 (03) :223-251
[9]   LOCAL UNITS MODULO CIRCULAR UNITS [J].
COLEMAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 89 (01) :1-7
[10]   DIVISION VALUES IN LOCAL FIELDS [J].
COLEMAN, RF .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :91-116