Essentially entropic lattice Boltzmann model: Theory and simulations

被引:5
作者
Atif, Mohammad [1 ]
Kolluru, Praveen Kumar [1 ]
Ansumali, Santosh [1 ,2 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Bangalore 560064, Karnataka, India
[2] SankhyaSutra Labs Ltd, Bangalore 560045, Karnataka, India
关键词
NAVIER-STOKES EQUATIONS; H-THEOREM; BGK MODEL; FLOW;
D O I
10.1103/PhysRevE.106.055307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a detailed description of the essentially entropic lattice Boltzmann model. The entropic lattice Boltzmann model guarantees unconditional numerical stability by iteratively solving the nonlinear entropy evolution equation. In this paper we explain the construction of closed-form analytic solutions to this equation. We demonstrate that near equilibrium this analytic solution reduces to the standard lattice Boltzmann model. We consider a few test cases to show that the analytic solution does not exhibit any significant deviation from the iterative solution. We also extend the analytical solution for the Ellipsoidal Statistical (ES)-Bhatnagar-Gross-Krook model to remove the limitation on the Prandtl number for heat transfer problems. The simplicity of the analytic solution removes the computational overhead and algorithmic complexity associated with the entropic lattice Boltzmann models.
引用
收藏
页数:18
相关论文
共 59 条
[1]   Fluctuating lattice Boltzmann [J].
Adhikari, R ;
Stratford, K ;
Cates, ME ;
Wagner, AJ .
EUROPHYSICS LETTERS, 2005, 71 (03) :473-479
[2]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[3]   The Gaussian-BGK model of Boltzmann equation with small Prandtl number [J].
Andries, P ;
Le Tallec, P ;
Perlat, JP ;
Perthame, B .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2000, 19 (06) :813-830
[4]   Kinetic boundary conditions in the lattice Boltzmann method [J].
Ansumali, S ;
Karlin, IV .
PHYSICAL REVIEW E, 2002, 66 (02) :1-026311
[5]   Consistent lattice Boltzmann method [J].
Ansumali, S ;
Karlin, IV .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[6]   Minimal entropic kinetic models for hydrodynamics [J].
Ansumali, S ;
Karlin, IV ;
Öttinger, HC .
EUROPHYSICS LETTERS, 2003, 63 (06) :798-804
[7]   Quasi-equilibrium lattice Boltzmann method [J].
Ansumali, S. ;
Arcidiacono, S. ;
Chikatamarla, S. S. ;
Prasianakis, N. I. ;
Gorban, A. N. ;
Karlin, I. V. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (02) :135-139
[8]   Entropic lattice Boltzmann method for microflows [J].
Ansumali, S ;
Karlin, IV ;
Frouzakis, CE ;
Boulouchos, KB .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 359 (289-305) :289-305
[9]  
Ansumali S, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056312
[10]   Entropy function approach to the Lattice Boltzmann method [J].
Ansumali, S ;
Karlin, HV .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (1-2) :291-308