Defect engineering in thermoelectric materials: what have we learned?

被引:345
作者
Zheng, Yun [1 ,2 ]
Slade, Tyler J. [3 ]
Hu, Lei [4 ]
Tan, Xian Yi [4 ]
Luo, Yubo [3 ,4 ]
Luo, Zhong-Zhen [3 ,4 ]
Xu, Jianwei [2 ]
Yan, Qingyu [4 ]
Kanatzidis, Mercouri G. [3 ]
机构
[1] Jianghan Univ, Key Lab Optoelect Chem Mat & Devices, Minist Educ, Wuhan 430056, Peoples R China
[2] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[4] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
LATTICE THERMAL-CONDUCTIVITY; FIGURE-OF-MERIT; IONIZED IMPURITY SCATTERING; BISMUTH-ANTIMONY TELLURIDE; P-TYPE PBS; HALF-HEUSLER; MECHANICAL-PROPERTIES; TRANSPORT-PROPERTIES; POINT-DEFECTS; SOLID-SOLUTIONS;
D O I
10.1039/d1cs00347j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermoelectric energy conversion is an all solid-state technology that relies on exceptional semiconductor materials that are generally optimized through sophisticated strategies involving the engineering of defects in their structure. In this review, we summarize the recent advances of defect engineering to improve the thermoelectric (TE) performance and mechanical properties of inorganic materials. First, we introduce the various types of defects categorized by dimensionality, i.e. point defects (vacancies, interstitials, and antisites), dislocations, planar defects (twin boundaries, stacking faults and grain boundaries), and volume defects (precipitation and voids). Next, we discuss the advanced methods for characterizing defects in TE materials. Subsequently, we elaborate on the influences of defect engineering on the electrical and thermal transport properties as well as mechanical performance of TE materials. In the end, we discuss the outlook for the future development of defect engineering to further advance the TE field.
引用
收藏
页码:9022 / 9054
页数:33
相关论文
共 399 条
[1]   LATTICE THERMAL CONDUCTIVITY OF DISORDERED SEMICONDUCTOR ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B .
PHYSICAL REVIEW, 1963, 131 (05) :1906-&
[2]   Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions [J].
Ahmad, Sajid ;
Singh, Ajay ;
Bohra, Anil ;
Basu, Ranita ;
Bhattacharya, Shovit ;
Bhatt, Ranu ;
Meshram, K. N. ;
Roy, Mainak ;
Sarkar, Shaibal K. ;
Hayakawa, Y. ;
Debnath, A. K. ;
Aswal, D. K. ;
Gupta, S. K. .
NANO ENERGY, 2016, 27 :282-297
[3]  
Airapetyants S.V., 1956, DOKL AKAD NAUK SSSR, V106, P981
[4]  
Akao T., 2012, P 2012 MECH ENG C SU, V4, P219
[5]   Fabrication of Zn4Sb3 Bulk Thermoelectric Materials Reinforced with SiC Whiskers [J].
Akao, Takahiro ;
Fujiwara, Yuya ;
Tarui, Yuki ;
Onda, Tetsuhiko ;
Chen, Zhong-Chun .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (06) :2047-2052
[6]   Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics:: Enhanced performance in Pb1-xSnxTe-PbS [J].
Androulakis, John ;
Lin, Chia-Her ;
Kong, Hun-Jin ;
Uher, Ctirad ;
Wu, Chun-I ;
Hogan, Timothy ;
Cook, Bruce A. ;
Caillat, Thierry ;
Paraskevopoulos, Konstantinos M. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (31) :9780-9788
[7]  
Angrist S.W., 1976, Direct energy conversion
[8]  
Augustine S., 2005, J PHYS CONDENS MATT, V17, P2873
[9]  
Azhar A., 2017, NANOTECHNOLOGY, V28
[10]   Ineffectiveness of energy filtering at grain boundaries for thermoelectric materials [J].
Bachmann, M. ;
Czerner, M. ;
Heiliger, C. .
PHYSICAL REVIEW B, 2012, 86 (11)