Poly(acryloyl hydrazide), a versatile scaffold for the preparation of functional polymers: synthesis and post-polymerisation modification

被引:17
作者
Crisan, Daniel N. [1 ]
Creese, Oliver [1 ]
Ball, Ranadeb [1 ]
Brioso, Jose Luis [1 ]
Martyn, Ben [2 ]
Montenegro, Javier [3 ,4 ]
Fernandez-Trillo, Francisco [1 ]
机构
[1] Univ Birmingham, Sch Chem, Birmingham B15 2TT, W Midlands, England
[2] Univ Warwick, Sch Chem, Coventry CV4 7AL, W Midlands, England
[3] Univ Santiago de Compostela, Dept Quim Organ, E-15782 Santiago, Spain
[4] Univ Santiago de Compostela, Ctr Singular Invest Quim Biol & Mat Mol CIQUS, E-15782 Santiago, Spain
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国工程与自然科学研究理事会;
关键词
RAFT POLYMERIZATION; POLYACRYLOYL HYDRAZIDE; RADICAL POLYMERIZATION; PEPTIDES; GLYCOPOLYMERS; CHEMISTRY; DELIVERY; PH; THERAPEUTICS; DENDRIMERS;
D O I
10.1039/c7py00535k
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Here we present the synthesis and post-polymerisation modification of poly(acryloyl hydrazide), a versatile scaffold for the preparation of functional polymers: poly(acryloyl hydrazide) was prepared from commercially available starting materials in a three step synthesis on a large scale, in good yields and high purity. Our synthetic approach included the synthesis of a Boc-protected acryloyl hydrazide, the preparation of polymers via RAFT polymerisation and the deprotection of the corresponding Boc-protected poly(acryloyl hydrazide). Post-polymerisation modification of poly(acryloyl hydrazide) was then demonstrated using a range of conditions for both hydrophilic and hydrophobic aldehydes. These experiments demonstrate the potential of poly(acryloyl hydrazide) as a scaffold in the synthesis of functional polymers, in particular those applications where in situ screening of the activity of the functionalised polymers may be required (e.g. biological applications).
引用
收藏
页码:4576 / 4584
页数:9
相关论文
共 52 条
  • [1] Mechanistic Insights into Temperature-Dependent Trithiocarbonate Chain-End Degradation during the RAFT Polymerization of N-Arylrnethacrylamides
    Abel, Brooks A.
    McCormick, Charles L.
    [J]. MACROMOLECULES, 2016, 49 (02) : 465 - 474
  • [2] Tunable pH- and CO2-Responsive Sulfonamide-Containing Polymers by RAFT Polymerization
    Abel, Brooks A.
    Sims, Michael B.
    McCormick, Charles L.
    [J]. MACROMOLECULES, 2015, 48 (16) : 5487 - 5495
  • [3] Imines, enamines and oximes
    Adams, JP
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1, 2000, (02): : 125 - 139
  • [4] Alexander C, 2013, RSC SMART MATER, P256, DOI 10.1039/9781849736800-00256
  • [5] Organometallic mediated radical polymerization
    Allan, Laura E. N.
    Perry, Mitchell R.
    Shaver, Michael P.
    [J]. PROGRESS IN POLYMER SCIENCE, 2012, 37 (01) : 127 - 156
  • [6] BarnerKowollik C., 2008, Handbook of RAFT Polymerization
  • [7] Bioapplications of RAFT Polymerization
    Boyer, Cyrille
    Bulmus, Volga
    Davis, Thomas P.
    Ladmiral, Vincent
    Liu, Jingquan
    Perrier, Sebastien
    [J]. CHEMICAL REVIEWS, 2009, 109 (11) : 5402 - 5436
  • [8] Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry
    Brisson, Emma R. L.
    Xiao, Zeyun
    Franks, George V.
    Connal, Luke A.
    [J]. BIOMACROMOLECULES, 2017, 18 (01) : 272 - 280
  • [9] Facile synthesis of histidine functional poly(N-isopropylacrylamide): zwitterionic and temperature responsive materials
    Brisson, Emma R. L.
    Xiao, Zeyun
    Levin, Lucas
    Franks, George V.
    Connal, Luke A.
    [J]. POLYMER CHEMISTRY, 2016, 7 (10) : 1945 - 1952
  • [10] Antibacterial polymeric nanostructures for biomedical applications
    Chen, Jing
    Wang, Fangyingkai
    Liu, Qiuming
    Du, Jianzhong
    [J]. CHEMICAL COMMUNICATIONS, 2014, 50 (93) : 14482 - 14493