Ground state solutions for a class of Schrodinger-Poisson systems with Hartree-type nonlinearity

被引:4
作者
Xie, Weihong [1 ]
Chen, Haibo [1 ]
Wu, Tsung-Fang [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung, Taiwan
基金
中国国家自然科学基金;
关键词
Daomin Cao; Ground state; Schrodinger-Poisson equations; Pohozaev type identity; Nehari manifold; Hartree-type; CHOQUARD-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1080/00036811.2019.1698725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Schrodinger-Poisson system with Hartree-type nonlinearity - u + u +.fu = (Ia * |u|p)|u|p-2u, inR3, -f = u2, in R3, where. > 0, 0 < a < 3, Ia is a Riesz potential and 3+ a 3 < p < 3 + a. By using the Pohozaev type identity and the filtration of Nehari manifold, we show the existence of positive ground state solutions for the above system.
引用
收藏
页码:2777 / 2803
页数:27
相关论文
共 50 条
  • [41] Positive ground state solutions for a class of Schrodinger-Poisson systems in R4 involving critical Sobolev exponent
    Khoutir, Sofiane
    Chen, Haibo
    ASYMPTOTIC ANALYSIS, 2018, 109 (1-2) : 91 - 109
  • [42] Normalized solutions of Kirchhoff equations with Hartree-type nonlinearity
    Yuan, Shuai
    Gao, Yuning
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (01): : 271 - 294
  • [43] Two positive solutions of a class of Schrodinger-Poisson system with indefinite nonlinearity
    Huang, Lirong
    Rocha, Eugenio M.
    Chen, Jianqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2463 - 2483
  • [44] Sufficient and necessary conditions for ground state sign-changing solutions to the Schrodinger-Poisson system with cubic nonlinearity on bounded domains
    Yu, Shubin
    Zhang, Ziheng
    APPLIED MATHEMATICS LETTERS, 2022, 123
  • [45] On ground state and nodal solutions of Schrodinger-Poisson equations with critical growth
    Zhang, Jian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (01) : 387 - 404
  • [46] Semiclassical ground state solutions for critical Schrodinger-Poisson systems with lower perturbations
    Chen, Sitong
    Fiscella, Alessio
    Pucci, Patrizia
    Tang, Xianhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (06) : 2672 - 2716
  • [47] Ground states for asymptotically periodic Schrodinger-Poisson systems with critical growth
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    Du, Miao
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (10): : 1484 - 1499
  • [48] INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR FRACTIONAL SCHRODINGER-POISSON SYSTEMS
    Guan, Wen
    Ma, Lu-Ping
    Wang, Da-Bin
    Zhang, Jin-Long
    QUAESTIONES MATHEMATICAE, 2021, 44 (09) : 1197 - 1207
  • [49] POSITIVE SOLUTIONS OF SCHRODINGER-POISSON SYSTEMS WITH HARDY POTENTIAL AND INDEFINITE NONLINEARITY
    Lan, Yongyi
    Tang, Biyun
    Hu, Xian
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, : 1 - 10
  • [50] Schrodinger-Poisson systems with a general critical nonlinearity
    Zhang, Jianjun
    do, Joao Marcos O.
    Squassina, Marco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (04)