Ground state solutions for a class of Schrodinger-Poisson systems with Hartree-type nonlinearity

被引:4
作者
Xie, Weihong [1 ]
Chen, Haibo [1 ]
Wu, Tsung-Fang [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung, Taiwan
基金
中国国家自然科学基金;
关键词
Daomin Cao; Ground state; Schrodinger-Poisson equations; Pohozaev type identity; Nehari manifold; Hartree-type; CHOQUARD-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1080/00036811.2019.1698725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Schrodinger-Poisson system with Hartree-type nonlinearity - u + u +.fu = (Ia * |u|p)|u|p-2u, inR3, -f = u2, in R3, where. > 0, 0 < a < 3, Ia is a Riesz potential and 3+ a 3 < p < 3 + a. By using the Pohozaev type identity and the filtration of Nehari manifold, we show the existence of positive ground state solutions for the above system.
引用
收藏
页码:2777 / 2803
页数:27
相关论文
共 28 条
[1]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[2]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[3]  
Benci V., 1998, Topol. Methods Nonlinear Anal, V11, P283, DOI [10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
[4]  
Brown KJ, 2007, ELECTRON J DIFFER EQ
[5]  
Brown KJ, 2009, DIFFER INTEGRAL EQU, V22, P1097
[6]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[7]   Ground state solutions for a class of Choquard equations with potential vanishing at infinity [J].
Chen, Sitong ;
Yuan, Shuai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :880-894
[8]   Positive solutions for the p-Laplacian: application of the fibrering method [J].
Drabek, P ;
Pohozaev, SI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :703-726
[9]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[10]   On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents [J].
Gao, Fashun ;
Yang, Minbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1006-1041