Efficiently enhancing the photocatalytic activity of faceted TiO2 nanocrystals by selectively loading α-Fe2O3 and Pt co-catalysts

被引:20
作者
Liu, Chang [1 ]
Tong, Ruifeng [1 ]
Xu, Zhenkai [1 ]
Kuang, Qin [1 ]
Xie, Zhaoxiong [1 ]
Zheng, Lansun [1 ]
机构
[1] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
来源
RSC ADVANCES | 2016年 / 6卷 / 35期
基金
中国国家自然科学基金;
关键词
ANATASE TIO2; PHOTOGENERATED ELECTRONS; CHARGE SEPARATION; DEGRADATION; NANOCOMPOSITES; COMPOSITES; PARTICLES; MECHANISM; HEMATITE; IMPROVE;
D O I
10.1039/c6ra04552a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The loading of oxidation and/or reduction co-catalysts onto the surface of semiconductor nanomaterials is one of the most efficient methods of improving the performance of semiconductor-based photocatalysts. However, in most of cases, the enhancing effect can be weakened by a random co-catalyst loading method because the different roles of photocatalyst facets in the photocatalytic process are not simultaneously considered. In this paper, a ternary composite photocatalyst, Fe2O3-TiO2-Pt, with alpha-Fe2O3 and Pt nanoparticles selectively deposited onto the {001} and {101} facets of TiO2, respectively, was successfully constructed using the facet-induced photogenerated electrons and holes of well-faceted anatase TiO2 nanocrystals as natural redox agents. The overall photocatalytic activity of this well-designed composite photocatalyst in H-2 production has been enhanced greatly by as much as 2.2 times and 30 times compared to the photocatalysts loaded randomly and without a co-catalyst, respectively. The enhanced photocatalytic activity of Fe2O3-TiO2-Pt was attributed to the remarkably enhanced separation of photogenerated charge carriers with the excitation of UV light.
引用
收藏
页码:29794 / 29801
页数:8
相关论文
共 39 条
[1]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[2]   Semiconductor-mediated photodegradation of pollutants under visible-light irradiation [J].
Chen, Chuncheng ;
Ma, Wanhong ;
Zhao, Jincai .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) :4206-4219
[3]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[4]   Crystal Surfaces and Fate of Photogenerated Defects in Shape-Controlled Anatase Nanocrystals: Drawing Useful Relations to Improve the H2 Yield in Methanol Photosteam Reforming [J].
D'Arienzo, Massimiliano ;
Dozzi, Maria Vittoria ;
Redaelli, Matteo ;
Di Credico, Barbara ;
Morazzoni, Franca ;
Scotti, Roberto ;
Polizzi, Stefano .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (22) :12385-12393
[5]   Metal-Organic Framework Templated Synthesis of Fe2O3/TiO2 Nanocomposite for Hydrogen Production [J].
deKrafft, Kathryn E. ;
Wang, Cheng ;
Lin, Wenbin .
ADVANCED MATERIALS, 2012, 24 (15) :2014-2018
[6]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[7]   Potassium titanate nanowires: Structure, growth, and optical properties [J].
Du, GH ;
Chen, Q ;
Han, PD ;
Yu, Y ;
Peng, LM .
PHYSICAL REVIEW B, 2003, 67 (03)
[8]   Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion [J].
Fan, Wenqing ;
Zhang, Qinghong ;
Wang, Ye .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (08) :2632-2649
[9]   Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J].
Hisatomi, Takashi ;
Kubota, Jun ;
Domen, Kazunari .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) :7520-7535
[10]   Luminescence mechanism of ZnO thin film investigated by XPS measurement [J].
Hsieh, P. -T. ;
Chen, Y. -C. ;
Kao, K. -S. ;
Wang, C. -M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 90 (02) :317-321