Nuclear performances of the water-cooled lithium lead DEMO reactor: Neutronic analysis on a fully heterogeneous model

被引:26
作者
Moro, F. [1 ]
Arena, P. [2 ]
Catanzaro, I. [3 ]
Colangeli, A. [1 ,4 ]
Del Nevo, A. [2 ]
Flammini, D. [1 ]
Fonnesu, N. [1 ]
Forte, R. [3 ]
Imbriani, V. [5 ]
Mariano, G. [1 ]
Mozzillo, R. [6 ]
Noce, S. [7 ]
Villari, R. [1 ]
机构
[1] ENEA, Dept Fus & Nucl Safety Technol, I-I00044 Frascati, Italy
[2] ENEA, Dept Fus & Nucl Safety Technol, I-40032 Camugnano, BO, Italy
[3] Univ Palermo, Dept Engn, I-90128 Palermo, Italy
[4] Univ Naples Federico II, Dept Ind Engn, CREATE, Naples, Italy
[5] Sapienza Univ Rome, DIAEE Dept, I-00186 Rome, Italy
[6] Univ Basilicata, Sch Engn, CREATE, I-85100 Potenza, Italy
[7] Univ Roma Tor Vergata, Dept Ind Engn, I-00133 Rome, Italy
关键词
DEMO; WCLL; Breeding blanket; Neutronics; Nuclear analysis; MCNP; CHALLENGES; TOOLS;
D O I
10.1016/j.fusengdes.2021.112514
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The development of a conceptual design for the Demonstration Fusion Power Reactor (DEMO) is a key issue within the EUROfusion roadmap. The DEMO reactor is designed to produce a fusion power of about 2 GW and generate a substantial amount of electricity, relying on a closed tritium fuel cycle: it implies that the breeding blanket (BB) shall guarantee a suitable tritium production to enable a continuous operation without any external supply. The Water-Cooled Lithium Lead (WCLL) concept is a candidate for the DEMO BB: it uses liquid Lithium Lead as breeder and neutron multiplier and water in PWR condition as coolant. The neutronics analyses carried out in the past have been performed using a semi-heterogeneous representation of the BB, since the complexity of its structure makes the generation of a detailed MCNP model a very demanding and challenging task. Results highlighted good performances for the WCLL BB, both in terms of shielding effectiveness and tritium self-sufficiency. A recently updated assessment of the tritium breeding ratio (TBR) requirement for DEMO, considering margins for calculation uncertainties and incomplete models of the whole machine, led to the definition of a tentative 1.15 value for the TBR. Moreover, the implementation of an accurate BB neutronics model, consistent with the engineering design, is recommended for the evaluation of the tritium self-sufficiency. In order to tackle these issues, an MCNP model of the DEMO tokamak, integrating a fully heterogeneous WCLL BB has been developed for the first time, including an accurate description of the FW water channels, as well as a comprehensive definition of the breeding zone inner structure. A complete assessment of the WCLL BB nuclear performances, through 3D neutron and gamma transport simulations, has been carried out by means the MCNP Monte Carlo code and JEFF nuclear libraries.
引用
收藏
页数:7
相关论文
共 14 条
[1]   Overview over DEMO design integration challenges and their impact on component design concepts [J].
Bachmann, C. ;
Ciattaglia, S. ;
Cismondi, F. ;
Eade, T. ;
Federici, G. ;
Fischer, U. ;
Franke, T. ;
Gliss, C. ;
Hernandez, F. ;
Keep, J. ;
Loughlin, M. ;
Maviglia, F. ;
Moro, F. ;
Morris, J. ;
Pereslavtsev, P. ;
Taylor, N. ;
Vizvary, Z. ;
Wenninger, R. .
FUSION ENGINEERING AND DESIGN, 2018, 136 :87-95
[2]   Materials challenges for ITER - Current status and future activities [J].
Barabash, V. ;
Peacock, A. ;
Fabritsiev, S. ;
Kalinin, G. ;
Zinkle, S. ;
Rowcliffe, A. ;
Rensman, J.-W. ;
Tavassoli, A. A. ;
Marmy, P. ;
Karditsas, P. J. ;
Gillemot, F. ;
Akiba, M. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 367 (SPEC. ISS.) :21-32
[3]   Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project [J].
Del Nevo, A. ;
Arena, P. ;
Caruso, G. ;
Chiovaro, P. ;
Di Maio, P. A. ;
Eboli, M. ;
Edemetti, F. ;
Forgione, N. ;
Forte, R. ;
Froio, A. ;
Giannetti, F. ;
Di Gironimo, G. ;
Jiang, K. ;
Liu, S. ;
Moro, F. ;
Mozzillo, R. ;
Savoldi, L. ;
Tarallo, A. ;
Tarantino, M. ;
Tassone, A. ;
Utili, M. ;
Villari, R. ;
Zanino, R. ;
Martelli, E. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :1805-1809
[4]   Overview of the DEMO staged design approach in Europe [J].
Federici, G. ;
Bachmann, C. ;
Barucca, L. ;
Baylard, C. ;
Biel, W. ;
Boccaccini, L., V ;
Bustreo, C. ;
Ciattaglia, S. ;
Cismondi, F. ;
Corator, V ;
Day, C. ;
Diegele, E. ;
Franke, T. ;
Gaio, E. ;
Gliss, C. ;
Haertl, T. ;
Ibarra, A. ;
Holden, J. ;
Keech, G. ;
Kembleton, R. ;
Loving, A. ;
Maviglial, F. ;
Morris, J. ;
Meszaros, B. ;
Moscato, I ;
Pintsuk, G. ;
Sicciniol, M. ;
Taylor, N. ;
Tran, M. Q. ;
Vorpahl, C. ;
Walden, H. ;
You, J. H. .
NUCLEAR FUSION, 2019, 59 (06)
[5]   An overview of the EU breeding blanket design strategy as an integral part of the DEMO design effort [J].
Federici, G. ;
Boccaccini, L. ;
Cismondi, F. ;
Gasparotto, M. ;
Poitevin, Y. ;
Ricapito, I. .
FUSION ENGINEERING AND DESIGN, 2019, 141 :30-42
[6]   Required, achievable and target TBR for the European DEMO [J].
Fischer, U. ;
Boccaccini, L., V ;
Cismondi, F. ;
Coleman, M. ;
Day, C. ;
Hoerstensmeyer, Y. ;
Moro, F. ;
Pereslavtsev, P. .
FUSION ENGINEERING AND DESIGN, 2020, 155
[7]   Methodological approach for DEMO neutronics in the European PPPT programme: Tools, data and analyses [J].
Fischer, U. ;
Bachmann, C. ;
Catalan, J. P. ;
Eade, T. ;
Flammini, D. ;
Gilbert, M. ;
Jaboulay, J. -Ch. ;
Konobeev, A. ;
Leichtle, D. ;
Lu, L. ;
Malouch, F. ;
Moro, F. ;
Pereslavtsev, P. ;
Qiu, Y. ;
Sanz, J. ;
Sauvan, P. ;
Stankunas, G. ;
Travleev, A. ;
Turner, A. ;
Ogando, F. ;
Palermo, I. ;
Villari, R. .
FUSION ENGINEERING AND DESIGN, 2017, 123 :26-31
[8]   Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant [J].
Fischer, U. ;
Bachmann, C. ;
Jaboulay, J. -C. ;
Moro, F. ;
Palermo, I. ;
Pereslavtsev, P. ;
Villari, R. .
FUSION ENGINEERING AND DESIGN, 2016, 109 :1458-1463
[9]   Neutronic analyses and tools development efforts in the European DEMO programme [J].
Fischer, U. ;
Bachmann, C. ;
Bienkowska, B. ;
Catalan, J. P. ;
Drozdowicz, K. ;
Dworak, D. ;
Leichtle, D. ;
Lengar, I. ;
Jaboulay, J. -C. ;
Lu, L. ;
Moro, F. ;
Mota, F. ;
Sanz, J. ;
Szieberth, M. ;
Palermo, I. ;
Pampin, R. ;
Porton, M. ;
Pereslavtsev, P. ;
Ogando, F. ;
Rovni, I. ;
Tracz, G. ;
Villari, R. ;
Zheng, S. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (9-10) :1880-1884
[10]  
Fischer U., EFDAD2MM3A6 IDM