Functional aspects of ribosomal architecture symmetry, chirality and regulations

被引:34
作者
Zarivach, R
Bashan, A
Berisio, R
Harms, J
Auerbach, T
Schluenzen, F
Bartels, H
Baram, D
Pyetan, E
Sittner, A
Amit, M
Hansen, HAS
Kessler, M
Liebe, C
Wolff, A
Agmon, I
Yonath, A [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
[2] Max Planck Res Unit Ribosomal Struct, D-22603 Hamburg, Germany
关键词
ribosomes; peptide-bond formation; positional-catalysis; D-amino acids; tunnel dynamics; elongation arrest; protein CTC; protein L22;
D O I
10.1002/poc.831
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
High-resolution structures of both ribosomal subunits revealed that most stages of protein biosynthesis, including decoding of genetic information, are navigated and controlled by the elaborate ribosomal architectural-design. Remote interactions govern accurate substrate alignment within a flexible active-site pocket [peptidyl transferase center (PTC)], and spatial considerations, due mainly to a universal mobile nucleotide, U2585, ensure proper chirality by interfering with D-amino-acids incorporation. tRNA translocation involves two correlated motions: overall mRNA/tRNA (messenger and transfer RNA) shift, and a rotation of the tRNA single-stranded aminoacylated-3' end around the bond connecting it with the tRNA helical-regions. This bond coincides with an axis passing through a sizable symmetry-related region, identified around the PTC in all large-subunit crystal structures. Propelled by a bulged universal nucleotide, A2602, positioned at the two-fold symmetry axis, and guided by a ribosomal-RNA scaffold along an exact pattern, the rotatory motion results in stereochemistry optimal for peptide-bond formation and in geometry ensuring nascent proteins entrance into their exit tunnel. Hence, confirming that ribosomes contribute positional rather than chemical catalysis, and that peptide bond formation is concurrent with A- to P-site tRNA passage. Connecting between the PTC, the decoding center, the tRNA entrance and exit points, the symmetry-related region can transfer intra-ribosomal signals between remote functional locations, guaranteeing smooth processivity of amino acids polymerization. Ribosomal proteins are involved in accurate substrate placement (L16), discrimination and signal transmission (L22) and protein biosynthesis regulation (CTC). Residing on the exit tunnel walls near its entrance, and stretching to its opening, protein-L22 can mediate ribosome response to cellular regulatory signals, since it can swing across the tunnel, causing gating and elongation arrest. Each of the protein CTC domains has a defined task. The N-terminal domain stabilizes the intersubunit-bridge confining the A-site-tRNA entrance. The middle domain protects the bridge conformation at elevated temperatures. The C-terminal domain can undergo substantial conformational rearrangements upon substrate binding, indicating CTC participation in biosynthesis-control under stressful conditions. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:901 / U4
页数:15
相关论文
共 72 条
[1]   On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes - Delivered on 20 October 2002 at the 28th FEBS Meeting in Istanbul [J].
Agmon, I ;
Auerbach, T ;
Baram, D ;
Bartels, H ;
Bashan, A ;
Berisio, R ;
Fucini, P ;
Hansen, HAS ;
Harms, J ;
Kessler, M ;
Peretz, M ;
Schluenzen, F ;
Yonath, A ;
Zarivach, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (12) :2543-2556
[2]   Effect of buffer conditions on the position of tRNA on the 70 S ribosome as visualized by cryoelectron microscopy [J].
Agrawal, RK ;
Penczek, P ;
Grassucci, RA ;
Burkhardt, N ;
Nierhaus, KH ;
Frank, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (13) :8723-8729
[3]  
Auerbach Tamar, 2002, Current Drug Targets - Infectious Disorders, V2, P169, DOI 10.2174/1568005023342506
[4]   SITE-SPECIFIC INCORPORATION OF NONNATURAL RESIDUES DURING INVITRO PROTEIN-BIOSYNTHESIS WITH SEMISYNTHETIC AMINOACYL-TRANSFER RNAS [J].
BAIN, JD ;
DIALA, ES ;
GLABE, CG ;
WACKER, DA ;
LYTTLE, MH ;
DIX, TA ;
CHAMBERLIN, AR .
BIOCHEMISTRY, 1991, 30 (22) :5411-5421
[5]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[6]   Ribosomal crystallography: Peptide bond formation and its inhibition [J].
Bashan, A ;
Zarivach, R ;
Schluenzen, F ;
Agmon, I ;
Harms, J ;
Auerbach, T ;
Baram, D ;
Berisio, R ;
Bartels, H ;
Hansen, HAS ;
Fucini, P ;
Wilson, D ;
Peretz, M ;
Kessler, M ;
Yonath, A .
BIOPOLYMERS, 2003, 70 (01) :19-41
[7]   Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression [J].
Bashan, A ;
Agmon, I ;
Zarivach, R ;
Schluenzen, F ;
Harms, J ;
Berisio, R ;
Bartels, H ;
Franceschi, F ;
Auerbach, T ;
Hansen, HAS ;
Kossoy, E ;
Kessler, M ;
Yonath, A .
MOLECULAR CELL, 2003, 11 (01) :91-102
[8]   A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition [J].
Bayfield, MA ;
Dahlberg, AE ;
Schulmeister, U ;
Dorner, S ;
Barta, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10096-10101
[9]   Structural insight into the antibiotic action of telithromycin against resistant mutants [J].
Berisio, R ;
Harms, J ;
Schluenzen, F ;
Zarivach, R ;
Hansen, HAS ;
Fucini, P ;
Yonath, A .
JOURNAL OF BACTERIOLOGY, 2003, 185 (14) :4276-4279
[10]   Structural insight into the role of the ribosomal tunnel in cellular regulation [J].
Berisio, R ;
Schluenzen, F ;
Harms, J ;
Bashan, A ;
Auerbach, T ;
Baram, D ;
Yonath, A .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (05) :366-370