The Laguerre-Sobolev-type orthogonal polynomials

被引:11
作者
Duenas, Herbert [1 ,2 ]
Marcellan, Francisco [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[2] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
关键词
Quasi-orthogonal polynomials; Laguerre polynomials; Relative asymptotics; Mehler-Heine formula; Zeros;
D O I
10.1016/j.jat.2009.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we Study the asymptotic behaviour of polynomials orthogonal with respect to a Sobolev-type inner product < p, q >(S) = integral(infinity)(0) p(x)q(x)x(alpha)e(-x)dx + N-p((j))(0)(q)((j))(0), where N is an element of R+ and j is an element of N. We Will focus Our attention on the outer relative asymptotics with respect to the standard Laguerre polynomials as well as oil all analog of the Mehler-Heine formula for the rescaled polynomials. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:421 / 440
页数:20
相关论文
共 18 条
[1]  
ALFARO M, ASYMPTOT AN IN PRESS
[2]   Asymptotic properties of generalized Laguerre orthogonal polynomials [J].
Alvarez-Noderse, R ;
Moreno-Balcázar, JJ .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (02) :151-165
[3]  
Andrew G., 1999, ENCY MATH ITS APPL, V71
[4]  
[Anonymous], 1988, Special functions of mathematical physics
[5]   Quasi-orthogonality with applications to some families of classical orthogonal polynomials [J].
Brezinski, C ;
Driver, KA ;
Redivo-Zaglia, M .
APPLIED NUMERICAL MATHEMATICS, 2004, 48 (02) :157-168
[6]  
Chihara Theodore S, 2011, An introduction to orthogonal polynomials
[7]  
Ismail M. E. H., 2005, CLASSICAL QUANTUM OR
[8]   A GENERALIZATION OF LAGUERRE-POLYNOMIALS [J].
KOEKOEK, R ;
MEIJER, HG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (03) :768-782
[9]   GENERALIZATIONS OF LAGUERRE-POLYNOMIALS [J].
KOEKOEK, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 153 (02) :576-590
[10]  
Lebedev N.N., 1972, Dover Books on Math- ematics