New analytic solution of Schrodinger's equation

被引:38
作者
Eleuch, H. [1 ,2 ,3 ]
Rostovtsev, Y. V. [1 ,2 ,4 ]
Scully, M. O. [1 ,2 ,3 ]
机构
[1] Texas A&M Univ, Inst Quantum Studies, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[3] Princeton Univ, Appl Phys & Mat Sci Grp, Princeton, NJ 08544 USA
[4] Univ N Texas, Dept Phys, Denton, TX 76203 USA
关键词
WAVE MECHANICS; APPROXIMATIONS; QUANTIZATION;
D O I
10.1209/0295-5075/89/50004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain an analytic solution beyond adiabatic approximation by transferring the 1D Schrodinger equation into the Ricatti equation. Then we show that our solution is more accurate than JWKB approximation. The generalizations of the approach to 3D are suggested, and possible applications of obtained solutions are discussed. Copyright (C) EPLA, 2010
引用
收藏
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2002, Classical Mechanics
[2]  
Belkic Dz., 2004, Principles of Quantum Scattering Theory
[3]   SEMICLASSICAL APPROXIMATIONS IN WAVE MECHANICS [J].
BERRY, MV ;
MOUNT, KE .
REPORTS ON PROGRESS IN PHYSICS, 1972, 35 (04) :315-+
[4]   ANTI-STEALTH - WKB GRAPPLES WITH A CORNER [J].
BESTLE, J ;
SCHLEICH, WP ;
WHEELER, JA .
APPLIED PHYSICS B-LASERS AND OPTICS, 1995, 60 (2-3) :289-299
[5]  
Biskamp D., 1993, Nonlinear Magnetohydrodynamics
[6]  
Bohm D., 1951, QUANTUM THEORY
[7]  
Brillouin L, 1926, CR HEBD ACAD SCI, V183, P24
[8]   The Wentzel-Brillouin-Kramers method of solving the wave equation [J].
Dunham, JL .
PHYSICAL REVIEW, 1932, 41 (06) :713-720
[9]  
Fetter A.L., 2003, Theoretical Mechanics of Particles and Continua, P1
[10]  
Froman N., 1965, JWKB Approximation