Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications

被引:12
作者
Zhao, Dafang [1 ,2 ]
Ali, Muhammad Aamir [3 ]
Luangboon, Waewta [4 ]
Budak, Huseyin [5 ]
Nonlaopon, Kamsing [4 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Peoples R China
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[4] Khon Kaen Univ, Fac Sci & Arts, Dept Math, Khon Kaen 40002, Thailand
[5] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkey
基金
湖北省教育厅重点项目;
关键词
midpoint inequalities; trapezoidal inequalities; Ostrowski's inequalities; Simpson's inequalities; quantum calculus; convex functions; HERMITE-HADAMARD INEQUALITIES; MIDPOINT TYPE INEQUALITIES; (ALPHA;
D O I
10.3390/fractalfract6030129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a new quantum integral equality involving a parameter, left and right quantum derivatives. Then, we use the newly established equality and prove some new estimates of quantum Ostrowski, quantum midpoint, quantum trapezoidal and quantum Simpson's type inequalities for q-differentiable convex functions. It is also shown that the newly established inequalities are the refinements of the existing inequalities inside the literature. Finally, some examples and applications are given to illustrate the investigated results.
引用
收藏
页数:21
相关论文
共 33 条
[1]  
Ali M.A., SIMPSONS NEWTO UNPUB
[2]   Some new Simpson's type inequalities for coordinated convex functions in quantum calculus [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Zhang, Zhiyue ;
Yildirim, Huseyin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4515-4540
[3]  
Alomari M., 2018, Turk. J. Sci, V3, P32
[4]  
Alp N, 2020, APPL MATH E-NOTES, V20, P341
[5]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[6]  
[Anonymous], 2001, Quantum Calculus
[7]   On q-Hermite-Hadamard inequalities for general convex functions [J].
Bermudo, S. ;
Korus, P. ;
Napoles Valdes, J. E. .
ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) :364-374
[8]  
Budak H., 2021, J. Math. Inequal
[9]  
Budak Hüseyin, 2021, Proyecciones (Antofagasta), V40, P199, DOI 10.22199/issn.0717-6279-2021-01-0013
[10]   Some New Quantum Hermite-Hadamard-Like Inequalities for Coordinated Convex Functions [J].
Budak, Huseyin ;
Ali, Muhammad Aamir ;
Tarhanaci, Meliha .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) :899-910