Properties of stability and Hopf bifurcation for a HIV infection model with time delay

被引:37
作者
Song, Xinyu [1 ]
Zhou, Xueyong [1 ]
Zhao, Xiang [1 ]
机构
[1] Xinyang Normal Univ, Dept Math, Xinyang 464000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Time delay; HIV infection; Hopf bifurcation; Global stability; DIFFERENTIAL EQUATION MODEL; CD4(+) T-CELLS; MATHEMATICAL-ANALYSIS; VIRAL DYNAMICS; IN-VIVO; SYSTEMS;
D O I
10.1016/j.apm.2009.09.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider the classical mathematical model with saturation response of the infection rate and time delay. By stability analysis we obtain sufficient conditions for the global stability of the infection-free steady state and the permanence of the infected steady state. Numerical simulations are carried out to explain the mathematical conclusions. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1511 / 1523
页数:13
相关论文
共 13 条
[1]   Geometric stability switch criteria in delay differential systems with delay dependent parameters [J].
Beretta, E ;
Kuang, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) :1144-1165
[2]   A delay-differential equation model of HIV infection of CD4+ T-cells [J].
Culshaw, RV ;
Ruan, SG .
MATHEMATICAL BIOSCIENCES, 2000, 165 (01) :27-39
[3]   A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay [J].
Culshaw, RV ;
Ruan, SG ;
Webb, G .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (05) :425-444
[4]   Target cell limited and immune control models of HIV infection: A comparison [J].
De Boer, RJ ;
Perelson, AS .
JOURNAL OF THEORETICAL BIOLOGY, 1998, 190 (03) :201-214
[5]   PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS [J].
HALE, JK ;
WALTMAN, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :388-395
[6]   Mathematical analysis of delay differential equation models of HIV-1 infection [J].
Nelson, PW ;
Perelson, AS .
MATHEMATICAL BIOSCIENCES, 2002, 179 (01) :73-94
[7]  
Perelson AS, 1997, AIDS, V11, pS17
[8]   Mathematical analysis of HIV-1 dynamics in vivo [J].
Perelson, AS ;
Nelson, PW .
SIAM REVIEW, 1999, 41 (01) :3-44
[9]   Global stability and periodic solution of the viral dynamics [J].
Song, Xinyu ;
Neumann, Avidan U. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) :281-297
[10]  
Song XY, 2005, J KOREAN MATH SOC, V42, P1071