Monotonicity properties of the gamma function

被引:37
作者
Alzer, Horst [1 ]
Batir, Necdet [1 ]
机构
[1] Yuzuncu Yil Univ, Fac Arts & Sci, Dept Math, TR-65080 Van, Turkey
关键词
gamma function; Psi function; complete monotonicity; inequalities;
D O I
10.1016/j.aml.2006.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gc(x) = log Gamma(x) - x log x + x- 1/2log(2 pi) + 1/2 psi(x + c) (x > 0; c >= 0). We prove that G(a) is completely momotonic on (0, infinity) if and only a >= 1/3. Also, -G(b) is completely monotonic on (0, infinity) if and only if b = 0. An application of this result reveals that the best possible nonnegative constants alpha, beta in root 2 pi x(x) exp (-x - 1/2 psi(x + alpha) < Gamma (x) < root 2 pi x(x) exp (-x - 1/2 psi(x + beta) (x > 0) are given by alpha = 1/3 and beta + 0. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:778 / 781
页数:4
相关论文
共 9 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS F, DOI DOI 10.1119/1.15378
[2]   SOME GAMMA FUNCTION INEQUALITIES [J].
ALZER, H .
MATHEMATICS OF COMPUTATION, 1993, 60 (201) :337-346
[3]  
Alzer H, 2002, ANN ACAD SCI FENN-M, V27, P445
[4]  
[Anonymous], 1941, LAPLACE TRANSFORM
[5]  
BUSTOZ J, 1986, MATH COMPUT, V47, P659, DOI 10.1090/S0025-5718-1986-0856710-6
[6]  
DUBOURDIEU J., 1939, Compositio Math., V7, P96
[7]  
GAUTSCHI W, 1998, TRICOMIS IDEAS CONT, V147, P207
[8]  
KERSHAW D, 1983, MATH COMPUT, V41, P607
[9]   Convexity, Schur-convexity and bounds for the gamma function involving the digamma function [J].
Merkle, M .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (03) :1053-1066