A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems

被引:43
|
作者
Petra, Noemi [1 ]
Petra, Cosmin G. [2 ]
Zhang, Zheng [3 ]
Constantinescu, Emil M. [4 ]
Anitescu, Mihai [4 ]
机构
[1] Univ Calif, Sch Nat Sci, Dept Appl Math, Merced, CA 95343 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[3] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
Power systems; uncertainty; parameter estimation; inverse problems; Bayesian analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; GLOBAL OPTIMIZATION; POLYNOMIALS; ALGORITHMS;
D O I
10.1109/TPWRS.2016.2625277
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problem of estimating the uncertainty in the solution of power grid inverse problems within the framework of Bayesian inference. We investigate two approaches, an adjoint-based method and a stochastic spectral method. These methods are used to estimate the maximum a posteriori point of the parameters and their variance, which quantifies their uncertainty. Within this framework, we estimate several parameters of the dynamic power system, such as generator inertias, which are not quantifiable in steady- state models. We illustrate the performance of these approaches on a 9-bus power grid example and analyze the dependence on measurement frequency, estimation horizon, perturbation size, andmeasurement noise. We assess the computational efficiency, and discuss the expected performance when these methods are applied to large systems.
引用
收藏
页码:2735 / 2743
页数:9
相关论文
共 50 条
  • [21] Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis
    Gouveia, WP
    Scales, JA
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1998, 103 (B2) : 2759 - 2779
  • [22] A machine learning approach to Bayesian parameter estimation
    Samuel Nolan
    Augusto Smerzi
    Luca Pezzè
    npj Quantum Information, 7
  • [23] PARAMETER UNCERTAINTY IN ESTIMATION OF SPATIAL FUNCTIONS - BAYESIAN-ANALYSIS
    KITANIDIS, PK
    WATER RESOURCES RESEARCH, 1986, 22 (04) : 499 - 507
  • [24] Particle Filter Joint State and Parameter Estimation of Dynamic Power Systems
    Uzunoglu, Bahri
    Akifulker, Muhammed
    Bayazit, Dervis
    2016 57TH INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2016,
  • [25] A Bayesian Approach to Real-Time Dynamic Parameter Estimation Using PMU Measurement
    Xu, Yijun
    Chen, Xiao
    Mili, Lamine
    Korkali, Mert
    Min, Liang
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [26] Augmented Sequential Bayesian Filtering for Parameter and Modeling Error Estimation of Linear Dynamic Systems
    Song, Mingming
    Ebrahimian, Hamed
    Moaveni, Babak
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2020, : 163 - 165
  • [27] Optimal nonlinear dynamic sparse model selection and Bayesian parameter estimation for nonlinear systems
    Adeyemo, Samuel
    Bhattacharyya, Debangsu
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 180
  • [28] Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model
    Nielsen, Jesper Kjaer
    Christensen, Mads Graesboll
    Cemgil, A. Taylan
    Godsill, Simon J.
    Jensen, Soren Holdt
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (07): : 1986 - 1998
  • [29] Dynamic Modeling, Parameter Estimation, and Uncertainty Analysis in R
    Kaschek, Daniel
    Mader, Wolfgang
    Fehling-Kaschek, Mirjam
    Rosenblatt, Marcus
    Timmer, Jens
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 88 (10): : 1 - 32
  • [30] A Comparative Study of Bayesian based filters for Dynamic State Estimation in Power Systems
    Banu, Sofia
    Johnson, Teena
    Moger, Tukaram
    2021 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE (IPRECON), 2021,