A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems

被引:43
作者
Petra, Noemi [1 ]
Petra, Cosmin G. [2 ]
Zhang, Zheng [3 ]
Constantinescu, Emil M. [4 ]
Anitescu, Mihai [4 ]
机构
[1] Univ Calif, Sch Nat Sci, Dept Appl Math, Merced, CA 95343 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[3] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
Power systems; uncertainty; parameter estimation; inverse problems; Bayesian analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; GLOBAL OPTIMIZATION; POLYNOMIALS; ALGORITHMS;
D O I
10.1109/TPWRS.2016.2625277
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problem of estimating the uncertainty in the solution of power grid inverse problems within the framework of Bayesian inference. We investigate two approaches, an adjoint-based method and a stochastic spectral method. These methods are used to estimate the maximum a posteriori point of the parameters and their variance, which quantifies their uncertainty. Within this framework, we estimate several parameters of the dynamic power system, such as generator inertias, which are not quantifiable in steady- state models. We illustrate the performance of these approaches on a 9-bus power grid example and analyze the dependence on measurement frequency, estimation horizon, perturbation size, andmeasurement noise. We assess the computational efficiency, and discuss the expected performance when these methods are applied to large systems.
引用
收藏
页码:2735 / 2743
页数:9
相关论文
共 39 条