A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems

被引:43
|
作者
Petra, Noemi [1 ]
Petra, Cosmin G. [2 ]
Zhang, Zheng [3 ]
Constantinescu, Emil M. [4 ]
Anitescu, Mihai [4 ]
机构
[1] Univ Calif, Sch Nat Sci, Dept Appl Math, Merced, CA 95343 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[3] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
Power systems; uncertainty; parameter estimation; inverse problems; Bayesian analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; GLOBAL OPTIMIZATION; POLYNOMIALS; ALGORITHMS;
D O I
10.1109/TPWRS.2016.2625277
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problem of estimating the uncertainty in the solution of power grid inverse problems within the framework of Bayesian inference. We investigate two approaches, an adjoint-based method and a stochastic spectral method. These methods are used to estimate the maximum a posteriori point of the parameters and their variance, which quantifies their uncertainty. Within this framework, we estimate several parameters of the dynamic power system, such as generator inertias, which are not quantifiable in steady- state models. We illustrate the performance of these approaches on a 9-bus power grid example and analyze the dependence on measurement frequency, estimation horizon, perturbation size, andmeasurement noise. We assess the computational efficiency, and discuss the expected performance when these methods are applied to large systems.
引用
收藏
页码:2735 / 2743
页数:9
相关论文
共 50 条
  • [1] A Bayesian Approach for Parameter Estimation in Railway Systems
    Jaoua, Nouha
    Vanheeghe, Philippe
    Navarro, Nicolas
    Langlois, Olivier
    Iordache, Marius
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [2] Parameter Estimation in Linear Dynamic Systems using Bayesian networks
    Garan, Maryna
    Vernon, Sylvain
    Kovalenko, Iaroslav
    Modrlak, Osvald
    Lepsik, Petr
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 203 - 208
  • [3] A NEURAL NETWORK-AUGMENTED BAYESIAN APPROACH TO UNCERTAIN PARAMETER ESTIMATION IN NONLINEAR DYNAMIC SYSTEMS
    Zakeri, Roja
    Shankar, Praveen
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 5, 2022,
  • [4] Estimation on lumped parameter systems: Dynamic optimization approach
    Nagy, E
    2005 INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), VOLS 1 AND 2, 2005, : 101 - 106
  • [5] Uncertainty in pose estimation: A Bayesian approach
    Callari, FG
    Soucy, G
    Ferrie, FP
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 972 - 976
  • [6] Realistic Assessment of Parameter Uncertainty in Dynamic Parameter Estimation
    Shacham, Mordechai
    Brauner, Neima
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2017, 40A : 283 - 288
  • [7] Fast Bayesian approach for parameter estimation
    Jin, Bangti
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (02) : 230 - 252
  • [8] An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions
    Jackson, C
    Sen, MK
    Stoffa, PL
    JOURNAL OF CLIMATE, 2004, 17 (14) : 2828 - 2841
  • [9] Online estimation of dynamic Bayesian network parameter
    Cho, Hyun C.
    Fadali, Sami M.
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3363 - +
  • [10] A novel approach to parametrization and parameter estimation in linear dynamic systems
    Deistler, M
    Ribarits, T
    Hanzon, B
    COMPSTAT 2004: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2004, : 137 - 147