Deep learning-based multilabel classification for locational detection of false data injection attack in smart grids

被引:40
|
作者
Mukherjee, Debottam [1 ]
Chakraborty, Samrat [2 ]
Ghosh, Sandip [1 ]
机构
[1] Indian Inst Technol BHU, Dept Elect Engn, Varanasi 221005, Uttar Pradesh, India
[2] Natl Inst Technol Arunachal Pradesh, Dept Elect Engn, Yupia 791112, Arunachal Prade, India
关键词
Cybersecurity; Deep learning; False data injection attack; Power system security; Smart grid; State estimation; STATE ESTIMATION;
D O I
10.1007/s00202-021-01278-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the recent advancement in smart grid technology, real-time monitoring of grid is utmost essential. State estimation-based solutions provide a critical tool in monitoring and control of smart grids. Recently there has been an increased focus on false data injection attacks which can circumvent the traditional statistical bad data detection algorithm. Most of the research methodologies focus on the presence of FDIA in measurement set, whereas their exact locations remain unknown. To cater this issue, this paper proposes a deep learning architecture for detection of the exact locations of data intrusions in real-time. This deep learning model in association with traditional bad data detection algorithms is capable of detecting both structured as well as unstructured false data injection attacks. The deep learning architecture is not dependent on statistical assumptions of the measurements, it emphasizes on the inconsistency and co-occurrence dependency of potential attacks in measurement set, thus acting as a multilabel classifier. Such kind of architecture remains model free without any prior statistical assumptions. Extensive research work on IEEE test-bench shows that this scheme is capable of identifying the locations for intrusion under varying noise scenarios. Such kind of an approach shows potential results also in detection of presence of falsified data.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 50 条
  • [21] Smart Grids False Data Injection Identification: a Deep Learning Approach
    Alves, Helton do Nascimento
    Bretas, Newton G.
    Bretas, Arturo S.
    Matthews, Ben-Hur
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [22] Deep learning for online AC False Data Injection Attack detection in smart grids: An approach using LSTM-Autoencoder
    Yang, Liqun
    Zhai, You
    Li, Zhoujun
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2021, 193 (193)
  • [23] Comparison of deep learning algorithms for site detection of false data injection attacks in smart grids
    Nasir, Qassim
    Abu Talib, Manar
    Arshad, Muhammad Arbab
    Ishak, Tracy
    Berrim, Romaissa
    Alsaid, Basma
    Badway, Youssef
    Abu Waraga, Omnia
    Energy Informatics, 2024, 7 (01)
  • [24] A novel strategy for locational detection of false data injection attack
    Mukherjee, Debottam
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2022, 31
  • [25] Interval Observer-Based Detection and Localization Against False Data Injection Attack in Smart Grids
    Luo, Xiaoyuan
    Li, Yating
    Wang, Xinyu
    Guan, Xinping
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (02) : 657 - 671
  • [26] False Data Injection Attack Detection for Secure Distributed Demand Response in Smart Grids
    Dayaratne, Thusitha
    Salehi, Mahsa
    Rudolph, Carsten
    Liebman, Ariel
    2022 52ND ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN 2022), 2022, : 367 - 380
  • [27] Quickest Detection of False Data Injection Attack in Wide-Area Smart Grids
    Li, Shang
    Yilmaz, Yasin
    Wang, Xiaodong
    IEEE TRANSACTIONS ON SMART GRID, 2015, 6 (06) : 2725 - 2735
  • [28] A novel detection and defense mechanism against false data injection attack in smart grids
    Cui, Jinlong
    Gao, Beibei
    Guo, Baojun
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (20) : 4514 - 4524
  • [29] A Hybrid Machine Learning-Based Framework for Data Injection Attack Detection in Smart Grids Using PCA and Stacked Autoencoders
    Tufail, Shahid
    Iqbal, Hasan
    Tariq, Mohd
    Sarwat, Arif I.
    IEEE ACCESS, 2025, 13 : 33783 - 33798
  • [30] Locational Detection of False Data Injection Attacks in Smart Grids: A Graph Convolutional Attention Network Approach
    Xia, Wei
    He, Deming
    Yu, Lisha
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06) : 9324 - 9337