Non-Nehari Manifold Method for Periodic Discrete Superlinear Schrodinger Equation

被引:33
作者
Tang, Xian Hua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Discrete nonlinear Schrodinger equation; non-Nehari manifold method; superlinear; ground state solutions of Nehari-Pankov type; GAP SOLITONS; HOMOCLINIC SOLUTIONS; DIFFERENCE-EQUATIONS; EXISTENCE;
D O I
10.1007/s10114-016-4262-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
where L is a Jacobi operator given by (Lu)(n) = a(n) u(n+ 1)+ a(n-1) u(n-1)+ b(n) u(n) for n is an element of Z, {a(n)} and {b(n)} are real valued N-periodic sequences, and f(n, t) is superlinear on t. Inspired by previous work of Pankov [Discrete Contin. Dyn. Syst., 19, 419-430 (2007)] and Szulkin and Weth [J. Funct. Anal., 257, 3802-3822 (2009)], we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f. Unlike the Nehari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 44 条
[1]   Optical gap solitons: Past, present, and future; theory and experiments [J].
Aceves, AB .
CHAOS, 2000, 10 (03) :584-589
[2]   Mathematical frontiers in optical solitons [J].
Bronski, JC ;
Segev, M ;
Weinstein, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :12872-12873
[3]   Discrete nonlinear Schrodinger equations with superlinear nonlinearities [J].
Chen, Guanwei ;
Ma, Shiwang .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5496-5507
[4]  
DESTERKE CM, 1994, PROG OPTICS, V33, P203
[5]  
Ding Y.H., 2007, Variational Methods for Strongly Indefinite Problems
[6]  
Edmunds D.E., 2018, Spectral Theory and Differential Operators, Vsecond
[7]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[8]   Observation of discrete solitons in optically induced real time waveguide arrays [J].
Fleischer, JW ;
Carmon, T ;
Segev, M ;
Efremidis, NK ;
Christodoulides, DN .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :023902/1-023902/4
[9]   Wave transmission in nonlinear lattices [J].
Hennig, D ;
Tsironis, GP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 307 (5-6) :333-432
[10]   The discrete nonlinear Schrodinger equation: A survey of recent results [J].
Kevrekidis, PG ;
Rasmussen, KO ;
Bishop, AR .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (21) :2833-2900