Sensitivity analysis based dimension reduction of multiscale models

被引:5
作者
Nikishova, Anna [1 ]
Comi, Giovanni E. [2 ]
Hoekstra, Alfons G. [1 ]
机构
[1] Univ Amsterdam, Fac Sci, Computat Sci Lab, Inst Informat, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
基金
欧盟地平线“2020”;
关键词
Dimension reduction; Sensitivity analysis; Uncertainty quantification; Multiscale model; Coupled models; Sobol sensitivity indices; UNCERTAINTY; QUANTIFICATION; FRAMEWORK; ERROR;
D O I
10.1016/j.matcom.2019.10.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the sensitivity analysis of a single scale model is employed in order to reduce the input dimensionality of the related multiscale model, in this way, improving the efficiency of its uncertainty estimation. The approach is illustrated with two examples: a reaction model and the standard Ornstein-Uhlenbeck process. Additionally, a counterexample shows that an uncertain input should not be excluded from uncertainty quantification without estimating the response sensitivity to this parameter. In particular, an analysis of the function defining the relation between single scale components is required to understand whether single scale sensitivity analysis can be used to reduce the dimensionality of the overall multiscale model input space. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.Y. All rights reserved.
引用
收藏
页码:205 / 220
页数:16
相关论文
共 27 条
[1]   Performance of distributed multiscale simulations [J].
Borgdorff, J. ;
Ben Belgacem, M. ;
Bona-Casas, C. ;
Fazendeiro, L. ;
Groen, D. ;
Hoenen, O. ;
Mizeranschi, A. ;
Suter, J. L. ;
Coster, D. ;
Coveney, P. V. ;
Dubitzky, W. ;
Hoekstra, A. G. ;
Strand, P. ;
Chopard, B. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2021)
[2]   Foundations of distributed multiscale computing: Formalization, specification, and analysis [J].
Borgdorff, Joris ;
Falcone, Jean-Luc ;
Lorenz, Eric ;
Bona-Casas, Carles ;
Chopard, Bastien ;
Hoekstra, Alfons G. .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2013, 73 (04) :465-483
[3]   Sensitivity analysis: A review of recent advances [J].
Borgonovo, Emanuele ;
Plischke, Elmar .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 248 (03) :869-887
[4]   A framework for multi-scale modelling [J].
Chopard, B. ;
Borgdorff, Joris ;
Hoekstra, A. G. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2021)
[5]  
Chopard Bastien, 2011, Unconventional Computation. Proceedings of the 10th International Conference, UC 2011, P2, DOI 10.1007/978-3-642-21341-0_2
[6]   Multiscale modeling: recent progress and open questions [J].
Chopard B. ;
Falcone J.-L. ;
Kunzli P. ;
Veen L. ;
Hoekstra A. .
Multiscale and Multidisciplinary Modeling, Experiments and Design, 2018, 1 (1) :57-68
[7]  
E W., 2011, Principles of Multiscale Modeling
[8]   Importance measures in global sensitivity analysis of nonlinear models [J].
Homma, T ;
Saltelli, A .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1996, 52 (01) :1-17
[9]   Monte Carlo evaluation of derivative-based global sensitivity measures [J].
Kucherenko, S. ;
Rodriguez-Fernandez, M. ;
Pantelides, C. ;
Shah, N. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (07) :1135-1148
[10]   Quantile based global sensitivity measures [J].
Kucherenko, Sergei ;
Song, Shufang ;
Wang, Lu .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 185 :35-48