Potential disruption of protein-protein interactions by graphene oxide

被引:28
|
作者
Feng, Mei [1 ]
Kang, Hongsuk [2 ]
Yang, Zaixing [3 ,4 ,5 ]
Luan, Binquan [2 ]
Zhou, Ruhong [1 ,2 ,6 ]
机构
[1] Zhejiang Univ, Dept Phys, Inst Quantitat Biol, Hangzhou 310027, Peoples R China
[2] IBM Thomas J Watson Res Ctr, Computat Biol Ctr, Yorktown Hts, NY 10598 USA
[3] Soochow Univ, Inst Quantitat Biol & Med, SRMP, Suzhou 215123, Peoples R China
[4] Soochow Univ, RAD X, Suzhou 215123, Peoples R China
[5] Soochow Univ, Collaborat Innovat Ctr Radiat Med Jiangsu Higher, Suzhou 215123, Peoples R China
[6] Columbia Univ, Dept Chem, New York, NY 10027 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 144卷 / 22期
基金
中国国家自然科学基金;
关键词
DNA-BINDING DOMAIN; IMMUNODEFICIENCY-VIRUS TYPE-1; HYDROPHOBIC GRAPHITE SURFACE; IONIC COMPLEMENTARY PEPTIDE; INTEGRASE PROTEIN; HIV-1; INTEGRASE; TERMINAL DOMAINS; ADSORPTION; SIMULATION; CELLS;
D O I
10.1063/1.4953562
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] NONADDITIVITY IN PROTEIN-PROTEIN INTERACTIONS
    HOROVITZ, A
    JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (03) : 733 - 735
  • [42] Anisotropic Protein-Protein Interactions
    Strofaldi, A.
    Mcmanus, J. J.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2019, 48 : S86 - S86
  • [43] Inhibiting protein-protein interactions
    Morrow, K. John, Jr.
    GENETIC ENGINEERING NEWS, 2006, 26 (10): : 1 - +
  • [44] Interrupting protein-protein interactions
    Gitig, Diana
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2008, 28 (11): : 44 - 45
  • [45] Unraveling protein-protein interactions
    Pray, L
    SCIENTIST, 2003, 17 (02): : 34 - 36
  • [46] Screening for protein-protein interactions
    Germino, FJ
    Moskowitz, NK
    CDNA PREPARATION AND CHARACTERIZATION, 1999, 303 : 422 - 450
  • [47] Principles of protein-protein interactions
    Teichmann, SA
    BIOINFORMATICS, 2002, 18 : S249 - S249
  • [48] Cooperativity in protein-protein interactions
    Brunsveld, L.
    FEBS OPEN BIO, 2022, 12 : 266 - 266
  • [49] Endothelial nitric oxide synthase regulation via protein-protein interactions
    Venema, RC
    VASCULAR ENDOTHELIUM: MECHANISMS OF CELL SIGNALING, 1999, 308 : 133 - 148
  • [50] Characterizing Protein-Protein Interactions
    Larkin, Michael I.
    Hanlon, Amy D.
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2011, 31 (09): : 24 - 25