Potential disruption of protein-protein interactions by graphene oxide

被引:28
作者
Feng, Mei [1 ]
Kang, Hongsuk [2 ]
Yang, Zaixing [3 ,4 ,5 ]
Luan, Binquan [2 ]
Zhou, Ruhong [1 ,2 ,6 ]
机构
[1] Zhejiang Univ, Dept Phys, Inst Quantitat Biol, Hangzhou 310027, Peoples R China
[2] IBM Thomas J Watson Res Ctr, Computat Biol Ctr, Yorktown Hts, NY 10598 USA
[3] Soochow Univ, Inst Quantitat Biol & Med, SRMP, Suzhou 215123, Peoples R China
[4] Soochow Univ, RAD X, Suzhou 215123, Peoples R China
[5] Soochow Univ, Collaborat Innovat Ctr Radiat Med Jiangsu Higher, Suzhou 215123, Peoples R China
[6] Columbia Univ, Dept Chem, New York, NY 10027 USA
基金
中国国家自然科学基金;
关键词
DNA-BINDING DOMAIN; IMMUNODEFICIENCY-VIRUS TYPE-1; HYDROPHOBIC GRAPHITE SURFACE; IONIC COMPLEMENTARY PEPTIDE; INTEGRASE PROTEIN; HIV-1; INTEGRASE; TERMINAL DOMAINS; ADSORPTION; SIMULATION; CELLS;
D O I
10.1063/1.4953562
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 52 条
  • [1] Graphene: Safe or Toxic? The Two Faces of the Medal
    Bianco, Alberto
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (19) : 4986 - 4997
  • [2] Nanopatterning of graphene with crystallographic orientation control
    Biro, Laszlo P.
    Lambin, Philippe
    [J]. CARBON, 2010, 48 (10) : 2677 - 2689
  • [3] Canonical sampling through velocity rescaling
    Bussi, Giovanni
    Donadio, Davide
    Parrinello, Michele
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
  • [4] Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide
    Cai, Weiwei
    Piner, Richard D.
    Stadermann, Frank J.
    Park, Sungjin
    Shaibat, Medhat A.
    Ishii, Yoshitaka
    Yang, Dongxing
    Velamakanni, Aruna
    An, Sung Jin
    Stoller, Meryl
    An, Jinho
    Chen, Dongmin
    Ruoff, Rodney S.
    [J]. SCIENCE, 2008, 321 (5897) : 1815 - 1817
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding
    Chen, JCH
    Krucinski, J
    Miercke, LJW
    Finer-Moore, JS
    Tang, AH
    Leavitt, AD
    Stroud, RM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) : 8233 - 8238
  • [7] Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides
    Cui, Yue
    Kim, Sang N.
    Jones, Sharon E.
    Wissler, Laurie L.
    Naik, Rajesh R.
    McAlpine, Michael C.
    [J]. NANO LETTERS, 2010, 10 (11) : 4559 - 4565
  • [8] Interplay between Drying and Stability of a TIM Barrel Protein: A Combined Simulation-Experimental Study
    Das, Payel
    Kapoor, Divya
    Halloran, Kevin T.
    Zhou, Ruhong
    Matthews, C. Robert
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (05) : 1882 - 1890
  • [9] The chemistry of graphene oxide
    Dreyer, Daniel R.
    Park, Sungjin
    Bielawski, Christopher W.
    Ruoff, Rodney S.
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) : 228 - 240
  • [10] Eijkelenboom APAM, 1999, PROTEINS, V36, P556, DOI 10.1002/(SICI)1097-0134(19990901)36:4<556::AID-PROT18>3.0.CO