Covering symmetric supermodular functions with graph edges: A short proof of a theorem of Benczur and Frank

被引:0
作者
Bernath, Attila [1 ]
机构
[1] Eotvos Lorand Univ, Dept Operat Res, MTA ELTE Egervary Res Grp, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Edge-connectivity augmentation; Crossing supermodular function; Polynomial algorithm; Graph algorithms;
D O I
10.1016/j.ipl.2017.08.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note we give a short and relatively simple algorithmic proof of a theorem of Benczur and Frank on covering a symmetric crossing supermodular function with a minimum number of graph edges. Our proof method also implies a deficient form of the theorem. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 5 条
[1]   Augmenting hypergraphs by edges of size two [J].
Bang-Jensen, J ;
Jackson, B .
MATHEMATICAL PROGRAMMING, 1999, 84 (03) :467-481
[2]  
Bernath Attila, 2008, TR200802 EG RES GROU
[3]   AUGMENTING GRAPHS TO MEET EDGE-CONNECTIVITY REQUIREMENTS [J].
FRANK, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (01) :25-53
[4]  
Frank Andras, 1994, MATH PROGRAM B, V84, P483
[5]   EDGE-CONNECTIVITY AUGMENTATION PROBLEMS [J].
WATANABE, T ;
NAKAMURA, A .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1987, 35 (01) :96-144