Neural Generalized Predictive Control for Tracking Maximum Efficiency and Maximum Power Points of PEM Fuel Cell Stacks

被引:0
作者
Pereira, Derick Furquim [1 ,2 ]
Lopes, Francisco da Costa [2 ]
Watanabe, Edson H. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[2] CEPEL Elect Energy Res Ctr, Rio De Janeiro, Brazil
来源
IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY | 2018年
关键词
MODEL; MANAGEMENT; HYDROGEN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work proposes a Neural Generalized Predictive Control (NGPC) for tracking the maximum efficiency or the maximum power point of proton exchange membrane fuel cell (PEMFC) stacks. The NGPC consists of a nonlinear type of model predictive control (MPC) in which the prediction model is a neural network (NN). Such control strategy combines the advantages of PEMFC modeling using NNs and the MPC family of controllers. NNs are capable of modeling the whole nonlinear dynamics and the time-varying behavior of PEMFC stacks, while the MPC can easily handle system constraints and it manipulates multiple control variables of complex systems. Through its optimization algorithm, the NGPC determines an optimal current necessary for the stack to operate at maximum efficiency or maximum power. This paper demonstrates the operation of the proposed control technique through a simulation study of a grid-connected PEMFC power generation system.
引用
收藏
页码:1878 / 1883
页数:6
相关论文
共 22 条
[1]  
Alejandro J., 2007, DECISION CONTROL, P5447, DOI DOI 10.1109/CDC.2007.4434550
[2]   Energy Management of Fuel Cell/Battery/Supercapacitor Hybrid Power Sources Using Model Predictive Control [J].
Amin ;
Trilaksono, Bambang Riyanto ;
Rohman, Arief Syaichu ;
Dronkers, Cees Jan ;
Ortega, Romeo ;
Sasongko, Arif .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (04) :1992-2002
[3]  
[Anonymous], 2011, THESIS
[4]   Real-Time Implementation of a Constrained MPC for Efficient Airflow Control in a PEM Fuel Cell [J].
Arce, Alicia ;
del Real, Alejandro J. ;
Bordons, Carlos ;
Ramirez, Daniel R. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (06) :1892-1905
[5]  
Beale M.H., 2016, Neural Network Toolbox User's Guide
[6]   Fuel cells and the hydrogen revolution: Analysis of a strategic plan in Japan [J].
Behling, Noriko ;
Williams, Mark C. ;
Managi, Shunsuke .
ECONOMIC ANALYSIS AND POLICY, 2015, 48 :204-221
[7]   Remaining Useful Life Prediction and Uncertainty Quantification of Proton Exchange Membrane Fuel Cell Under Variable Load [J].
Bressel, Mathieu ;
Hilairet, Mickael ;
Hissel, Daniel ;
Bouamama, Belkacem Ould .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (04) :2569-2577
[8]  
Camacho E. F., 2007, MODEL PREDICTIVE CON
[9]   Hydrogen as a fuel and energy storage: Success factors for the German Energiewende [J].
Ehret, Oliver ;
Bonhoff, Klaus .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (15) :5526-5533
[10]  
Fletcher N. J., 2005, AVISTA SR 12 PEM HYD