ERROR ESTIMATION AND ADAPTIVITY FOR STOCHASTIC COLLOCATION FINITE ELEMENTS PART I: SINGLE-LEVEL APPROXIMATION

被引:3
作者
Bespalov, Alex [1 ]
Silvester, David J. [2 ]
Xu, Feng [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Manchester, Dept Math, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
stochastic collocation; finite element approximation; PDEs with random data; error estimation; adaptivity; PARTIAL-DIFFERENTIAL-EQUATIONS; ELLIPTIC PDES; FEM; INTERPOLATION; CONVERGENCE;
D O I
10.1137/21M1446745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general adaptive refinement strategy for solving linear elliptic partial differential equations with random data is proposed and analysed herein. The adaptive strategy extends the a posteriori error estimation framework introduced by Guignard and Nobile [SIAM J. Numer. Anal., 56 (2018), pp. 3121--3143] to cover problems with a nonaffine parametric coefficient dependence. A suboptimal, but nonetheless reliable and convenient implementation of the strategy involves approximation of the decoupled PDE problems with a common finite element approximation space. Computational results obtained using such a single-level strategy are presented in this paper (part I). Results obtained using a potentially more efficient multilevel approximation strategy, where meshes are individually tailored, will be discussed in part II of this work. The codes used to generate the numerical results are available on GitHub.
引用
收藏
页码:A3393 / A3412
页数:20
相关论文
共 29 条
  • [1] [Anonymous], 2000, PUR AP M-WI
  • [2] A stochastic collocation method for elliptic partial differential equations with random input data
    Babuska, Ivo
    Nobile, Fabio
    Tempone, Raul
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1005 - 1034
  • [3] FULLY DISCRETE APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDES
    Bachmayr, Markus
    Cohen, Albert
    Dinh Dung
    Schwab, Christoph
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (05) : 2151 - 2186
  • [4] A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES
    BANK, RE
    SMITH, RK
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) : 921 - 935
  • [5] T-IFISS: a toolbox for adaptive FEM computation
    Bespalov, Alex
    Rocchi, Leonardo
    Silvester, David
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 : 373 - 390
  • [6] A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: Beyond the affine case
    Bespalov, Alex
    Xu, Feng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1084 - 1103
  • [7] CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM
    Bespalov, Alex
    Praetorius, Dirk
    Rocchi, Leonardo
    Ruggeri, Michele
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) : 2359 - 2382
  • [8] Efficient Adaptive Algorithms for Elliptic PDEs with Random Data
    Bespalov, Alex
    Rocchi, Leonardo
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (01): : 243 - 272
  • [9] EFFICIENT ADAPTIVE STOCHASTIC GALERKIN METHODS FOR PARAMETRIC OPERATOR EQUATIONS
    Bespalov, Alex
    Silvester, David
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04) : A2118 - A2140
  • [10] ENERGY NORM A POSTERIORI ERROR ESTIMATION FOR PARAMETRIC OPERATOR EQUATIONS
    Bespalov, Alex
    Powell, Catherine E.
    Silvester, David
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02) : A339 - A363