Primitive quantum gates for dihedral gauge theories

被引:39
作者
Alam, M. Sohaib [1 ,2 ,3 ]
Hadfield, Stuart [2 ,3 ]
Lamm, Henry [4 ]
Li, Andy C. Y. [4 ]
机构
[1] Rigetti Comp, Berkeley, CA 94701 USA
[2] NASA Ames Res Ctr, Quantun Artificial Intelligence Lab QuAIL, Moffett Field, CA 94035 USA
[3] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA
[4] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
基金
美国能源部;
关键词
MONTE-CARLO; GENERALIZED ACTIONS; PHASE-STRUCTURE; SPACE DECIMATION; MODELS; ALGORITHMS; SU(3); EXPANSIONS; SUBGROUPS; CIRCUITS;
D O I
10.1103/PhysRevD.105.114501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe the simulation of dihedral gauge theories on digital quantum computers. The non-Abelian discrete gauge group D-N-the dihedral group-serves as an approximation to U(1) x Z(2) lattice gauge theory. In order to carry out such a lattice simulation, we detail the construction of efficient quantum circuits to realize basic primitives including the non-Abelian Fourier transform over D-N, the trace operation, and the group multiplication and inversion operations. For each case the required quantum resources scale linearly or as low-degree polynomials in n = log N. We experimentally benchmark our gates on the Rigetti Aspen-9 quantum processor for the case of D-4. The estimated fidelity of all D-4 gates was found to exceed 80%.
引用
收藏
页数:18
相关论文
共 132 条
[1]   Implementation of XY entangling gates with a single calibrated pulse [J].
Abrams, Deanna M. ;
Didier, Nicolas ;
Johnson, Blake R. ;
da Silva, Marcus P. ;
Ryan, Colm A. .
NATURE ELECTRONICS, 2020, 3 (12) :744-+
[2]   Gluon field digitization for quantum computers [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Harmalkar, Siddhartha ;
Lamm, Henry ;
Lawrence, Scott ;
Warrington, Neill C. .
PHYSICAL REVIEW D, 2019, 100 (11)
[3]  
[Anonymous], 2001, P SCI HEP2001, P229
[4]  
[Anonymous], 2014, NUCL PHYS, VA931, P246
[5]  
[Anonymous], 1985, Cambridge Monographs on Mathematical Physics
[6]   Photon-Mediated Stroboscopic Quantum Simulation of a Z2 Lattice Gauge Theory [J].
Armon, Tsafrir ;
Ashkenazi, Shachar ;
Garcia-Moreno, Gerardo ;
Gonzalez-Tudela, Alejandro ;
Zohar, Erez .
PHYSICAL REVIEW LETTERS, 2021, 127 (25)
[7]   STRONG COUPLING EXPANSIONS IN PURE LATTICE GAUGE-THEORY MIXED ACTIONS [J].
AYALA, C ;
BAIG, M .
ANNALS OF PHYSICS, 1990, 198 (01) :1-23
[8]   Single-particle digitization strategy for quantum computation of a φ4 scalar field theory [J].
Barata, Joao ;
Mueller, Niklas ;
Tarasov, Andrey ;
Venugopalan, Raju .
PHYSICAL REVIEW A, 2021, 103 (04)
[9]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[10]   Gauge-invariant implementation of the Abelian-Higgs model on optical lattices [J].
Bazavov, A. ;
Meurice, Y. ;
Tsai, S. -W. ;
Unmuth-Yockey, J. ;
Zhang, Jin .
PHYSICAL REVIEW D, 2015, 92 (07)