Collection integral vs. Choquet integral

被引:3
作者
Seliga, Adam [1 ]
Smrek, Peter [1 ]
机构
[1] Slovak Univ Technol Bratislava, Dept Math & Descript Geometry, Fac Civil Engn, Radlinskeho 11, Bratislava 81005, Slovakia
关键词
Collection integrals; Choquet integral; Integral inequalities;
D O I
10.1016/j.fss.2020.08.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we discuss integral inequalities for collection integrals that are a special subclass of decomposition integrals in-troduced as a general framework for many non-linear integrals, including the Choquet integral, the Shilkret integral, the PAN integral, and the concave integral. We give a full characterization of collection integrals that are comonotone additive and for which Chebyshev's, Jensen's, Cauchy's, and Holder's integral inequalities hold. Interestingly, all these classes of collection integrals coincide and thus we introduce a special subclass of collection integrals, called PCC integrals. The paper is complemented with some examples and remarks for collection and decomposition integrals. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 1985, Fuzzy Math.
[2]  
Choquet G., 1954, Ann. l' Inst. Fourier, V5, P131, DOI DOI 10.5802/AIF.53
[3]   Decomposition-integral: unifying Choquet and the concave integrals [J].
Even, Yaarit ;
Lehrer, Ehud .
ECONOMIC THEORY, 2014, 56 (01) :33-58
[4]   Chebyshev type inequality for Choquet integral and comonotonicity [J].
Girotto, Bruno ;
Holzer, Silvano .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2011, 52 (08) :1118-1123
[5]   On the convex functions and inequalities between mean values [J].
Jensen, JLWV .
ACTA MATHEMATICA, 1906, 30 (02) :175-193
[6]   Integrals based on monotone set functions [J].
Klement, Erich Peter ;
Li, Jun ;
Mesiar, Radko ;
Pap, Endre .
FUZZY SETS AND SYSTEMS, 2015, 281 :88-102
[7]   A new integral for capacities [J].
Lehrer, Ehud .
ECONOMIC THEORY, 2009, 39 (01) :157-176
[8]   Decomposition integrals [J].
Mesiar, Radko ;
Stupnanova, Andrea .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (08) :1252-1259
[9]  
Mesiar R, 2010, KYBERNETIKA, V46, P1098
[10]   A Jensen type inequality for fuzzy integrals [J].
Roman-Flores, H. ;
Flores-Franulic, A. ;
Chalco-Cano, Y. .
INFORMATION SCIENCES, 2007, 177 (15) :3192-3201