Magnetization reversal process in (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures

被引:19
作者
Liu, Lei [1 ,2 ]
Liu, Zhuang [1 ,2 ]
Zhang, Xin [1 ,2 ]
Feng, Yanping [1 ,2 ]
Wang, Chunxiao [1 ,2 ]
Sun, Yingli [1 ,2 ]
Lee, Don [1 ,2 ]
Yan, Aru [1 ,2 ]
Wu, Qiong [3 ]
机构
[1] Chinese Acad Sci, Key Lab Magnet Mat & Devices, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Zhejiang Prov Key Lab Magnet Mat & Applicat Techn, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[3] China Jiliang Univ, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
TEMPERATURE PERMANENT-MAGNETS; DOMAIN-STRUCTURES; COERCIVITY; MICROSTRUCTURE;
D O I
10.1063/1.4975701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetization reversal mechanism is found to vary with cellular structures by a comparative study of the magnetization processes of three (Sm, Dy, Gd) (Co, Fe, Cu, Zr)(z) magnets with different cellular structures. Analysis of domain walls, initial magnetization curves and recoil loops indicates that the morphology of cellular structure has a significant effect on the magnetization process, besides the obvious connection to the difference of domain energy density between cell boundary phase (CBP) and main phase. The magnetization of Sample 2 (with a moderate cell size and uniformly continuous CBPs) behaves as a strong coherence domain-wall pinning effect to the domain wall and lead to a highest coercivity in the magnet. The magnetization of Sample 1 (with thin and discontinuous CBPs) shows an inconsistent pinning effect to the domain wall while that of Sample 3 (with thick and aggregate CBPs) exhibits a two-phase separation magnetization. Both the two cases lead to lower coercivities. A simplified model is given as well to describe the relationships among cellular structure and magnetization behavior. (C) 2017 Author(s).
引用
收藏
页数:6
相关论文
共 18 条
[1]   The intergrain exchange coupling in Sm(Co, Fe, Cu, Zr)z magnets with z=7.0 and 7.5 [J].
Chen, Ren-Jie ;
Wang, Jin-Zhi ;
Zhang, Hong-Wei ;
Shen, Bao-Gen ;
Yan, Aru .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (15) :4391-4395
[2]   Influence of heat treatment on structure and reversal magnetization processes of Sm12.5Co66.5Fe8Cu13 alloy [J].
Dospial, Marcin J. ;
Nabialek, Marcin G. ;
Szota, Michal ;
Mydlarz, Tadeusz ;
Ozga, Katarzyna ;
Lesz, Sabina .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 536 :S324-S328
[3]   Magnetization behaviour in exchange-coupled Sm2Fe14Ga3C2/alpha-Fe [J].
Feutrill, EH ;
McCormick, PG ;
Street, R .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (09) :2320-2326
[4]   Micromagnetism and the microstructure of high-temperature permanent magnets [J].
Goll, D ;
Kronmüller, H ;
Stadelmaier, HH .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (11) :6534-6545
[5]   Samarium-cobalt 2:17 magnets: Analysis of the coercive field of Sm2(CoFeCuZr)17 high-temperature permanent magnets [J].
Goll, D. ;
Stadelmaier, H. H. ;
Kronmueller, H. .
SCRIPTA MATERIALIA, 2010, 63 (02) :243-245
[6]   Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr.04)7.4 ribbons [J].
Gopalan, R. ;
Hono, K. ;
Yan, A. ;
Gutfleisch, O. .
SCRIPTA MATERIALIA, 2009, 60 (09) :764-767
[7]   Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets [J].
Gutfleisch, O ;
Müller, KH ;
Khlopkov, K ;
Wolf, M ;
Yan, A ;
Schäfer, R ;
Gemming, T ;
Schultz, L .
ACTA MATERIALIA, 2006, 54 (04) :997-1008
[8]   Nanophase hard magnets [J].
Hadjipanayis, GC .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 200 (1-3) :373-391
[9]   Coercivity of 2:17 based permanent magnets [J].
Kronmueller, H. ;
Goll, D. .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2006, 13 :39-47
[10]   Positive temperature coefficient of coercivity in Sm1-xDyx(Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnets with spin-reorientation-transition cell boundary phases [J].
Liu, L. ;
Liu, Z. ;
Li, M. ;
Lee, Don ;
Chen, R. J. ;
Liu, J. ;
Li, W. ;
Yan, A. R. .
APPLIED PHYSICS LETTERS, 2015, 106 (05)