Lightweight pixel-wise segmentation for efficient concrete crack detection using hierarchical convolutional neural network

被引:13
作者
Kim, Jin [1 ]
Shim, Seungbo [1 ,2 ]
Cha, Yohan [3 ]
Cho, Gye-Chun [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Civil & Environm Engn, Daejeon 34141, South Korea
[2] Korea Inst Civil Engn & Bldg Technol KICT, Future Infrastruct Res Ctr, Goyang 10223, South Korea
[3] Korea Inst Geosci & Mineral Resources KIGAM, Deep Subsurface Res Ctr, Daejeon 34132, South Korea
关键词
crack detection; deep learning; infrastructure maintenance; semantic segmentation; CLASSIFICATION; SYSTEM;
D O I
10.1088/1361-665X/abea1e
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The aging of concrete structures is a threat to public safety; therefore, maintenance and repair of these structures have been highly emphasized. However, regular inspections to detect concrete cracks that rely on operators lack objectivity and consume a lot of time. To overcome this limitation, high-resolution image processing and deep learning have been adopted. Nevertheless, cracks on structure surfaces are still challenging to detect owing to the variety of shapes of cracks and the dependence of recognition performance on image conditions. Herein, we propose a new concrete crack detection method that applies the semantic segmentation technique using 1196 concrete crack images and labeled images produced in this study. A new segmentation algorithm is developed using a hierarchical convolutional neural network to improve speed, and a multi-loss update method is proposed to improve accuracy. The performance of the proposed network is evaluated in terms of accuracy and speed. The results show that the proposed network produces a 2.165% increase in the intersection over union of crack, 65.90% decrease in the average inference time, and 99.90% decrease in the number of parameters compared with the best accuracy results using existing segmentation networks. It is expected that the application of this improved crack detection method will result in faster and more accurate crack detection and, consequently, improved safety, thereby making it suitable for application in structure safety inspections.
引用
收藏
页数:12
相关论文
共 58 条
  • [1] Al-Saffar AAM, 2017, 2017 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS (ICRAMET), P26, DOI 10.1109/ICRAMET.2017.8253139
  • [2] [Anonymous], 2018, MENDELEY DATA, DOI DOI 10.17632/5Y9WDSG2ZT.1
  • [3] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [4] Encoder-decoder network for pixel-level road crack detection in black-box images
    Bang, Seongdeok
    Park, Somin
    Kim, Hongjo
    Kim, Hyoungkwan
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2019, 34 (08) : 713 - 727
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] Autonomous concrete crack detection using deep fully convolutional neural network
    Cao Vu Dung
    Le Duc Anh
    [J]. AUTOMATION IN CONSTRUCTION, 2019, 99 : 52 - 58
  • [7] Review of Pavement Defect Detection Methods
    Cao, Wenming
    Liu, Qifan
    He, Zhiquan
    [J]. IEEE ACCESS, 2020, 8 : 14531 - 14544
  • [8] Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
    Cha, Young-Jin
    Choi, Wooram
    Buyukozturk, Oral
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (05) : 361 - 378
  • [9] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [10] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848