Martensite phase structure of Mg-Sc lightweight shape memory alloy and the effect of rare earth elements doping

被引:33
作者
Zhao, Wenbin [1 ]
Guo, Erjun [1 ]
Zhang, Kun [2 ]
Tian, Xiaohua [2 ]
Tan, Changlong [1 ,2 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mat Sci & Engn, Harbin 150080, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Sci, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Lightweight shape memory alloy; Martensitic transformation; Martensitic transformation temperature; Rare earth elements; Mg-Sc alloy; MECHANICAL-PROPERTIES; NI; TRANSFORMATION; TEMPERATURE; BEHAVIOR;
D O I
10.1016/j.scriptamat.2021.113863
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
With the continual increase of application requirement of lightweight shape memory alloys (SMAs), MgSc alloys have drawn great attention as a new SMA. However, the ambiguous martensitic structure, unclear transformation path, and low martensitic transformation temperature (T-m) of Mg-Sc alloys are still issues. Herein, the martensitic structure and transformation path of Mg-Sc alloys were investigated systematically. The martensite phase was identified finally to be an orthorhombic structure by formation energy. Moreover, to improve the T-m, the effect of rare earth elements doping on T-m was studied, and T-m was increased by 28.2 K with 1.25 at.% Gd doping. The total density of states indicated that the phase stability determined the increase of T-m. Furthermore, the partial density of states indicated that the d orbital electrons coupling between Sc and Gd atom led to the changing of T-m. Our results provide a firm base for designing the new Mg-Sc-based lightweight SMAs. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 43 条
[1]   Shape memory properties of Ti-Nb-Mo biomedical alloys [J].
Al-Zain, Y. ;
Kim, H. Y. ;
Hosoda, H. ;
Nam, T. H. ;
Miyazaki, S. .
ACTA MATERIALIA, 2010, 58 (12) :4212-4223
[2]   Gabedit-A Graphical User Interface for Computational Chemistry Softwares [J].
Allouche, Abdul-Rahman .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) :174-182
[3]  
[Anonymous], 2017, NPJ COMPUT MATER
[4]   Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying [J].
Atli, K. C. ;
Karaman, I. ;
Noebe, R. D. ;
Garg, A. ;
Chumlyakov, Y. I. ;
Kireeva, I. V. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (10) :2485-2497
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Martensitic transformation and mechanical properties of Ni-Mn-Ga-Y ferromagnetic shape memory alloys [J].
Cai, W. ;
Gao, L. ;
Liu, A. L. ;
Sui, J. H. ;
Gao, Z. Y. .
SCRIPTA MATERIALIA, 2007, 57 (07) :659-662
[7]   Interfacial defects in Ti-Nb shape memory alloys [J].
Chai, Y. W. ;
Kim, H. Y. ;
Hosoda, H. ;
Miyazaki, S. .
ACTA MATERIALIA, 2008, 56 (13) :3088-3097
[8]   Ab initio studies of effect of copper substitution on the electronic and magnetic properties of Ni2MnGa and Mn2NiGa [J].
Chakrabarti, Aparna ;
Siewert, Mario ;
Roy, Tufan ;
Mondal, Krishnakanta ;
Banerjee, Arup ;
Gruner, Markus E. ;
Entel, Peter .
PHYSICAL REVIEW B, 2013, 88 (17)
[9]   Compositional instability of β-phase in Ni-Mn-Ga alloys [J].
Chernenko, VA .
SCRIPTA MATERIALIA, 1999, 40 (05) :523-527
[10]   Martensitic transformation in Co2NiGa ferromagnetic shape memory alloys [J].
Craciunescu, C ;
Kishi, Y ;
Lograsso, TA ;
Wuttig, M .
SCRIPTA MATERIALIA, 2002, 47 (04) :285-288