Silicon Microparticle Anodes with Self-Healing Multiple Network Binder

被引:437
作者
Xu, Zhixin [1 ]
Yang, Jun [1 ]
Zhang, Tao [1 ]
Nuli, Yanna [1 ]
Wang, Jiulin [1 ]
Hirano, Shin-ichi [2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Electrochem Energy Devices Res Ctr, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Hirano Inst Mat Innovat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
ION BATTERY ANODES; PRACTICAL APPLICATION; POLYMER BINDER; CHALLENGES; DESIGN; PARTICLES; PROGRESS;
D O I
10.1016/j.joule.2018.02.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si has been regarded as a promising anode material for Li-ion batteries. However, its dramatic volume change during cycling poses formidable challenges to building stable electrodes. Since Si microparticles (SiMPs) can easily cause the pulverization and loss of electronic contact, many previous works were focused on porous-structured, nanostructured, or hierarchically structured silicon materials to improve the cycle stability. However, their low-cost and mass production is mostly difficult or even impossible. Herein, a water-soluble polymer binder, poly(acrylic acid)-poly(2-hydroxyethyl acrylate-co-dopamine methacrylate), is designed and synthesized. It shows better wettability to liquid electrolyte than poly(acrylic acid). Moreover, its multiple network structure with rigid-soft chains and bonds, and special self-healing capability in situ formed during the electrode preparation, not only provides enough mechanical support but also buffers the strain caused by the volume change of SiMPs. Thus, the cycle stability and rate performance are remarkably improved under high reversible capacity or electrode loading.
引用
收藏
页码:950 / 961
页数:12
相关论文
共 35 条
[1]   Rechargeable lithium batteries and beyond: Progress, Challenges, and future directions [J].
Amine, Khalil ;
Kanno, Ryoji ;
Tzeng, Yonhua .
MRS BULLETIN, 2014, 39 (05) :395-405
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[4]  
Chen Z, 2015, ADV ENERGY MATER, V5, P8, DOI [DOI 10.1002/AENM.201401826, 10.1002/aenm.201401826]
[5]   Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries [J].
Choi, Nam-Soon ;
Ha, Se-Young ;
Lee, Yongwon ;
Jang, Jun Yeong ;
Jeong, Myung-Hwan ;
Shin, Woo Cheol ;
Ue, Makoto .
JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2015, 6 (02) :35-49
[6]   Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J].
Choi, Sunghun ;
Kwon, Tae-Woo ;
Coskun, Ali ;
Choi, Jang Wook .
SCIENCE, 2017, 357 (6348) :279-283
[7]   Self-healing and thermoreversible rubber from supramolecular assembly [J].
Cordier, Philippe ;
Tournilhac, Francois ;
Soulie-Ziakovic, Corinne ;
Leibler, Ludwik .
NATURE, 2008, 451 (7181) :977-980
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]   Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges [J].
Gu, Meng ;
He, Yang ;
Zheng, Jianming ;
Wang, Chongmin .
NANO ENERGY, 2015, 17 :366-383
[10]   Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J].
Ji, Liwen ;
Lin, Zhan ;
Alcoutlabi, Mataz ;
Zhang, Xiangwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) :2682-2699