From small-scale forest structure to Amazon-wide carbon estimates

被引:38
作者
Roedig, Edna [1 ,2 ]
Knapp, Nikolai [1 ]
Fischer, Rico [1 ]
Bohn, Friedrich J. [1 ]
Dubayah, Ralph [3 ]
Tang, Hao [3 ]
Huth, Andreas [1 ,4 ,5 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Dept Ecol Modelling, Permoserstr 15, D-04318 Leipzig, Germany
[2] UFZ Helmholtz Ctr Environm Res, Dept Computat Hydrosyst, Permoserstr 15, D-04318 Leipzig, Germany
[3] Univ Maryland, Dept Geog Sci, 2120 Lefrak Hall, College Pk, MD 20742 USA
[4] Univ Osnabruck, Barbarastr 12, D-49076 Osnabruck, Germany
[5] German Ctr Integrat Biodivers Res iDiv, Deutsch Pl 5e, D-04103 Leipzig, Germany
关键词
LAND-COVER CLASSIFICATION; NET PRIMARY PRODUCTION; BIOMASS ESTIMATION; WOOD DENSITY; LIDAR; VEGETATION; HEIGHT; MAP; ECOSYSTEM; DYNAMICS;
D O I
10.1038/s41467-019-13063-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tropical forests play an important role in the global carbon cycle. High-resolution remote sensing techniques, e.g., spaceborne lidar, can measure complex tropical forest structures, but it remains a challenge how to interpret such information for the assessment of forest biomass and productivity. Here, we develop an approach to estimate basal area, aboveground biomass and productivity within Amazonia by matching 770,000 GLAS lidar (ICESat) profiles with forest simulations considering spatial heterogeneous environmental and ecological conditions. This allows for deriving frequency distributions of key forest attributes for the entire Amazon. This detailed interpretation of remote sensing data improves estimates of forest attributes by 20-43% as compared to (conventional) estimates using mean canopy height. The inclusion of forest modeling has a high potential to close a missing link between remote sensing measurements and the 3D structure of forests, and may thereby improve continent-wide estimates of biomass and productivity.
引用
收藏
页数:7
相关论文
共 58 条
[1]   Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance [J].
Abshire, JB ;
Sun, XL ;
Riris, H ;
Sirota, JM ;
McGarry, JF ;
Palm, S ;
Yi, DH ;
Liiva, P .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (21) :1-4
[2]   FOREST CONSERVATION Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation [J].
Asner, G. P. ;
Martin, R. E. ;
Knapp, D. E. ;
Tupayachi, R. ;
Anderson, C. B. ;
Sinca, F. ;
Vaughn, N. R. ;
Llactayo, W. .
SCIENCE, 2017, 355 (6323) :385-388
[3]   Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric [J].
Asner, Gregory P. ;
Mascaro, Joseph .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :614-624
[4]   An integrated pan-tropical biomass map using multiple reference datasets [J].
Avitabile, Valerio ;
Herold, Martin ;
Heuvelink, Gerard B. M. ;
Lewis, Simon L. ;
Phillips, Oliver L. ;
Asner, Gregory P. ;
Armston, John ;
Ashton, Peter S. ;
Banin, Lindsay ;
Bayol, Nicolas ;
Berry, Nicholas J. ;
Boeckx, Pascal ;
de Jong, Bernardus H. J. ;
DeVries, Ben ;
Girardin, Cecile A. J. ;
Kearsley, Elizabeth ;
Lindsell, Jeremy A. ;
Lopez-Gonzalez, Gabriela ;
Lucas, Richard ;
Malhi, Yadvinder ;
Morel, Alexandra ;
Mitchard, Edward T. A. ;
Nagy, Laszlo ;
Qie, Lan ;
Quinones, Marcela J. ;
Ryan, Casey M. ;
Ferry, Slik J. W. ;
Sunderland, Terry ;
Laurin, Gaia Vaglio ;
Gatti, Roberto Cazzolla ;
Valentini, Riccardo ;
Verbeeck, Hans ;
Wijaya, Arief ;
Willcock, Simon .
GLOBAL CHANGE BIOLOGY, 2016, 22 (04) :1406-1420
[5]   Tropical forests are a net carbon source based on aboveground measurements of gain and loss [J].
Baccini, A. ;
Walker, W. ;
Carvalho, L. ;
Farina, M. ;
Sulla-Menashe, D. ;
Houghton, R. A. .
SCIENCE, 2017, 358 (6360) :230-233
[6]   Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps [J].
Baccini, A. ;
Goetz, S. J. ;
Walker, W. S. ;
Laporte, N. T. ;
Sun, M. ;
Sulla-Menashe, D. ;
Hackler, J. ;
Beck, P. S. A. ;
Dubayah, R. ;
Friedl, M. A. ;
Samanta, S. ;
Houghton, R. A. .
NATURE CLIMATE CHANGE, 2012, 2 (03) :182-185
[7]   Variation in wood density determines spatial patterns in Amazonian forest biomass [J].
Baker, TR ;
Phillips, OL ;
Malhi, Y ;
Almeida, S ;
Arroyo, L ;
Di Fiore, A ;
Erwin, T ;
Killeen, TJ ;
Laurance, SG ;
Laurance, WF ;
Lewis, SL ;
Lloyd, J ;
Monteagudo, A ;
Neill, DA ;
Patiño, S ;
Pitman, NCA ;
Silva, JNM ;
Martínez, RV .
GLOBAL CHANGE BIOLOGY, 2004, 10 (05) :545-562
[8]   The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times [J].
Bloom, A. Anthony ;
Exbrayat, Jean-Francois ;
van der Velde, Ivar R. ;
Feng, Liang ;
Williams, Mathew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (05) :1285-1290
[9]   Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data [J].
Bouvier, Marc ;
Durrieu, Sylvie ;
Fournier, Richard A. ;
Renaud, Jean-Pierre .
REMOTE SENSING OF ENVIRONMENT, 2015, 156 :322-334
[10]   GAP-PHASE REGENERATION IN A TROPICAL FOREST [J].
BROKAW, NVL .
ECOLOGY, 1985, 66 (03) :682-687