Multiple positive solutions for a Dirichlet problem involving critical Sobolev exponent

被引:25
作者
Li, Tiexiang [1 ]
Wu, Tsung-fang [2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Peoples R China
关键词
Ljustemik-Schnirelmann category; Multiple positive solutions; Critical Sobolev exponent; Nehari manifold; CHANGING WEIGHT FUNCTION; SEMILINEAR ELLIPTIC EQUATION; CONVEX NONLINEARITIES; NODAL SOLUTIONS; TOPOLOGY; CONCAVE; DOMAINS;
D O I
10.1016/j.jmaa.2010.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the decomposition of the Nehari manifold via the combination of concave and convex nonlinearities. Furthermore, we use this result and the Ljusternik-Schnirelmann category to prove that the existence of multiple positive solutions for a Dirichlet problem involving critical Sobolev exponent. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 27 条
[1]  
Adimurthy, 1997, DIFFER INTEGRAL EQU, V10, P1157
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[4]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[5]  
Binding P.A., 1997, Electron. J. Differ. Equ., V5, P1
[6]  
Brezis H., 1989, ANN SC NORM SUPER PI, P129
[7]  
Brown K.J., 2007, Electron. J. Differ. Equ., V1, P9
[8]  
Brown KJ, 2009, DIFFER INTEGRAL EQU, V22, P1097
[9]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[10]   The effect of concentrating potentials in some singularly perturbed problems [J].
Cerami, G ;
Passaseo, D .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (03) :257-281