Dynamic of the smooth positons of the higher-order Chen-Lee-Liu equation

被引:27
作者
Hu, Aijuan [1 ]
Li, Maohua [1 ]
He, Jingsong [2 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
[2] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
关键词
HOCLL equation; Positon solution; Degenerate Darboux transformation; Trajectory; Phase shift; NONLINEAR SCHRODINGER-EQUATION; ROGUE WAVE SOLUTIONS; KDV; TRANSMISSION; BREATHERS; SOLITONS; FORMULA;
D O I
10.1007/s11071-021-06547-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on the degenerate Darboux transformation, the n-positon solution of the higher-order Chen-Lee-Liu (HOCLL) equation are obtained by the special limit lambda(j) -> lambda(1) taking from the corresponding n-soliton solution, and using the higher-order Taylor expansion. Using the method of the modulus square decomposition, n-positon is decomposed into n single soliton solutions. The dynamic properties of smooth positon of the HOCLL equation are discussed in detail, and the corresponding trajectory, approximate trajectory and "phase shift" are obtained. In addition, the mixed solutions of soliton and positon are discussed, and the corresponding three-dimensional map are given.
引用
收藏
页码:4329 / 4338
页数:10
相关论文
共 50 条
  • [1] Agrawal GP, 2012, NONLIEAR FIBER OPTIC
  • [2] DARBOUX TRANSFORMATION, POSITONS AND GENERAL SUPERPOSITION FORMULA FOR THE SINE-GORDON EQUATION
    ANDREEV, VA
    BREZHNEV, YV
    [J]. PHYSICS LETTERS A, 1995, 207 (1-2) : 58 - 66
  • [3] Baleanu D, 2020, Appl Math Inf Sci, V14, P365
  • [4] WHAT DO SOLITONS, BREATHERS AND POSITRONS HAVE IN COMMON
    BEUTLER, R
    STAHLHOFEN, A
    MATVEEV, VB
    [J]. PHYSICA SCRIPTA, 1994, 50 (01): : 9 - 12
  • [5] POSITRON SOLUTIONS OF THE SINE-GORDON EQUATION
    BEUTLER, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) : 3098 - 3109
  • [6] BEUTLER R, 1994, NATO ADV SCI INST SE, V329, P267
  • [7] INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD
    CHEN, HH
    LEE, YC
    LIU, CS
    [J]. PHYSICA SCRIPTA, 1979, 20 (3-4): : 490 - 492
  • [8] Positon-like solutions of nonlinear evolution equations in (2+1) dimensions
    Chow, KW
    Lai, WC
    Shek, CK
    Tso, K
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (11) : 1901 - 1912
  • [9] On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation
    Dubard, P.
    Gaillard, P.
    Klein, C.
    Matveev, V. B.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) : 247 - 258
  • [10] Eckhaus F, 1987, INVERSE PROBL, V3, P62