Tunable Fano Resonance in E-Shape Plasmonic Nanocavities

被引:41
作者
Sun, Bo [1 ,2 ]
Zhao, Lixia [1 ]
Wang, Chao [3 ]
Yi, Xiaoyan [1 ]
Liu, Zhiqiang [1 ]
Wang, Guohong [1 ]
Li, Jinmin [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Semicond Lighting Technol Res & Dev Ctr, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Energy Sci & Engn, Chengdu 611731, Peoples R China
关键词
SYMMETRY-BREAKING; GOLD NANORINGS; CLUSTERS; NANOSTRUCTURES; METAMATERIALS; INTERFERENCE; LIGHT;
D O I
10.1021/jp4105882
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The optical properties of e-shape plasmonic nanocavities have been studied. Due to the destructive interference of the quadrupole resonance of the c-shape nanoring with the overlapping dipolar resonance of the nanorod, a tunable Fano resonance within a wide range of spectra from visible light to mid-infrared (mid-IR) spectrum have been observed. The spectral positions and modulation depths of the Fano resonances can be tuned with different geometry parameters of nanocavities, and the performance (modulation depth of spectra and near-field enhancement) of e-shape plasmonic nanocavities can be further improved by optimization of the nanocavity radiation characteristics using a dielectric layer (SiO2). Furthermore, capacitive coupling between c-shape nanoring and nanorod antenna was found to be asymmetric, in which Fano resonance can be modulated to symmetric/antisymmetric quadrupoledipole by moving the nanorod in the positive/negative direction of the x axis. This work opens up new opportunities for engineering spectral features and optimizing performance of a broad range of plasmonics devices.
引用
收藏
页码:25124 / 25131
页数:8
相关论文
共 42 条
[1]  
Bryant G. W., 2003, PHYS REV LETT, V90
[2]   Nonlinear Fano profiles in the optical second-harmonic generation from silver nanoparticles [J].
Butet, J. ;
Bachelier, G. ;
Russier-Antoine, I. ;
Bertorelle, F. ;
Mosset, A. ;
Lascoux, N. ;
Jonin, C. ;
Benichou, E. ;
Brevet, P. -F. .
PHYSICAL REVIEW B, 2012, 86 (07)
[3]   Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing [J].
Cetin, Arif E. ;
Altug, Hatice .
ACS NANO, 2012, 6 (11) :9989-9995
[4]   Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab [J].
Christ, A ;
Tikhodeev, SG ;
Gippius, NA ;
Kuhl, J ;
Giessen, H .
PHYSICAL REVIEW LETTERS, 2003, 91 (18) :183901-183901
[5]   Symmetry breaking in a plasmonic metamaterial at optical wavelength [J].
Christ, Andre ;
Martin, Olivier J. F. ;
Ekinci, Yasin ;
Gippius, Nikolai A. ;
Tikhodeev, Sergei G. .
NANO LETTERS, 2008, 8 (08) :2171-2175
[6]   Frequency tunable near-infrared metamaterials based on VO2 phase transition [J].
Dicken, Matthew J. ;
Aydin, Koray ;
Pryce, Imogen M. ;
Sweatlock, Luke A. ;
Boyd, Elizabeth M. ;
Walavalkar, Sameer ;
Ma, James ;
Atwater, Harry A. .
OPTICS EXPRESS, 2009, 17 (20) :18330-18339
[7]   Circuit elements at optical frequencies:: Nanoinductors, nanocapacitors, and nanoresistors -: art. no. 095504 [J].
Engheta, N ;
Salandrino, A ;
Alù, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (09)
[8]   Fano-like Interference in Self-Assembled Plasmonic Quadrumer Clusters [J].
Fan, Jonathan A. ;
Bao, Kui ;
Wu, Chihhui ;
Bao, Jiming ;
Bardhan, Rizia ;
Halas, Naomi J. ;
Manoharan, Vinothan N. ;
Shvets, Gennady ;
Nordlander, Peter ;
Capasso, Federico .
NANO LETTERS, 2010, 10 (11) :4680-4685
[9]   Self-Assembled Plasmonic Nanoparticle Clusters [J].
Fan, Jonathan A. ;
Wu, Chihhui ;
Bao, Kui ;
Bao, Jiming ;
Bardhan, Rizia ;
Halas, Naomi J. ;
Manoharan, Vinothan N. ;
Nordlander, Peter ;
Shvets, Gennady ;
Capasso, Federico .
SCIENCE, 2010, 328 (5982) :1135-1138
[10]   Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures [J].
Fu, Yuan Hsing ;
Zhang, Jing Bo ;
Yu, Ye Feng ;
Luk'yanchuk, Boris .
ACS NANO, 2012, 6 (06) :5130-5137