empirical spectral process;
exponential inequalities for quadratic forms;
nonparametric maximum likelihood estimation;
locally stationary processes;
sieve estimation;
D O I:
10.1214/009053606000000867
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper deals with nonparametric maximum likelihood estimation for Gaussian locally stationary processes. Our nonparametric MLE is constructed by minimizing a frequency domain likelihood over a class of functions. The asymptotic behavior of the resulting estimator is studied. The results depend on the richness of the class of functions. Both sieve estimation and global estimation are considered. Our results apply, in particular, to estimation under shape constraints. As an example, autoregressive model fitting with a monotonic variance function is discussed in detail, including algorithmic considerations. A key technical tool is the time-varying empirical spectral process indexed by functions. For this process, a Bernstein-type exponential inequality and a central limit theorem are derived. These results for empirical spectral processes are of independent interest.