Positive radial solutions for a class of singular superlinear problems on the exterior of a ball with nonlinear boundary conditions

被引:28
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Carolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
关键词
Singular superlinear problems; Nonlinear boundary conditions; Exterior domains; Positive solutions; Existence and nonexistence results; LINEAR ELLIPTIC-EQUATIONS; SEMIPOSITONE PROBLEMS; NONNEGATIVE SOLUTIONS; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.jmaa.2017.06.088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss existence and nonexistence results of positive radial solutions to the problem {-Delta u - lambda K(vertical bar x vertical bar)f(u) in vertical bar x vertical bar < r(0), partial derivative u/partial derivative n + <(c)over bar>(u)i = 0 on vertical bar x vertical bar = r(0), u(x) -> 0 as vertical bar x vertical bar -> infinity, where Omega = {x is an element of R-N : vertical bar x vertical bar > r(0) > 0}, N > 2, f : (0, infinity) -> R is continuous, superlinear at infinity, and is allowed to be singular at 0 with no sign conditions near 0. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:872 / 881
页数:10
相关论文
共 17 条
[1]   UNIQUENESS AND STABILITY OF NONNEGATIVE SOLUTIONS FOR SEMIPOSITONE PROBLEMS IN A BALL [J].
ALI, I ;
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) :775-782
[2]  
Allegretto W., 1992, DIFFERENTIAL INTEGRA, V5, P95
[3]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[4]  
[Anonymous], 1994, Differ. Integr. Equ
[5]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[6]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[7]  
Brown K.J., 1989, DIFFER INTEGRAL EQU, V2, P541
[8]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF RADIALLY SYMMETRIC NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (03) :735-740
[9]   NONNEGATIVE SOLUTIONS TO A SEMILINEAR DIRICHLET PROBLEM IN A BALL ARE POSITIVE AND RADIALLY SYMMETRIC [J].
CASTRO, A ;
SHIVAJI, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (8-9) :1091-1100
[10]   BRANCHES OF RADIAL SOLUTIONS FOR SEMIPOSITONE PROBLEMS [J].
CASTRO, A ;
GADAM, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 120 (01) :30-45