Flexible interdigital-electrodes-based triboelectric generators for harvesting sliding and rotating mechanical energy

被引:50
作者
Leng, Qiang [1 ]
Guo, Hengyu [1 ]
He, Xianming [1 ]
Liu, Guanlin [1 ]
Kang, Yue [1 ]
Hu, Chenguo [1 ]
Xi, Yi [1 ]
机构
[1] Chongqing Univ, Dept Appl Phys, Chongqing 400044, Peoples R China
关键词
NANOGENERATOR; PERFORMANCE; SEPARATION; VIBRATION; POLYMER; CELL;
D O I
10.1039/c4ta04137b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric generators have attracted considerable attention due to their rapidly improved electromechanical conversion efficiency. It is a great challenge to design a triboelectric generator to enable practical and effective operations. In this paper, we present a flexible interdigital-electrodes-based triboelectric generator (FITG) for harvesting sliding and rotating mechanical energy. When a film of flexible interdigital electrodes is placed on a plane, it can be used for harvesting sliding energy. When the film of the flexible interdigital electrodes is rolled into a cylinder, it can be used for harvesting rotating energy. In sliding mode, the maximum open-circuit voltage, short-circuit current and peak power density reach up to 400 V, 120 mA (10 mA m(-2)) and 13 W m(-2), respectively, under a sliding velocity of 3.95 m s(-1), which can be used to light tens of light-emitting diodes (LEDs) and to charge a commercial capacitor to 7.2 V within 35 s. The FITG can harvest the mechanical energy of mouse operation and traditional printing. In rotating mode, the maximum output voltage of the generator reaches as high as 1020 V at a rotating speed of 240 rpm. The FITG with interdigital electrodes on a flexible substrate has the advantages of light weight, resistance to wear, multifunction and high output power.
引用
收藏
页码:19427 / 19434
页数:8
相关论文
共 36 条
[1]   Integrated Multi layered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions [J].
Bai, Peng ;
Zhu, Guang ;
Lin, Zong-Hong ;
Jing, Qingshen ;
Chen, Jun ;
Zhang, Gong ;
Ma, Jusheng ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (04) :3713-3719
[2]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[3]   Graphene Oxide-Based Carbon Interconnecting Layer for Polymer Tandem Solar Cells [J].
Chen, Yonghua ;
Lin, Wei-Chun ;
Liu, Jun ;
Dai, Liming .
NANO LETTERS, 2014, 14 (03) :1467-1471
[4]   Nanocontact Electrification: Patterned Surface Charges Affecting Adhesion, Transfer, and Printing [J].
Cole, Jesse J. ;
Barry, Chad R. ;
Knuesel, Robert J. ;
Wang, Xinyu ;
Jacobs, Heiko O. .
LANGMUIR, 2011, 27 (11) :7321-7329
[5]   Facile Preparation and Thermoelectric Properties of Bi2Te3 Based Alloy Nanosheet/PEDOT:PSS Composite Films [J].
Du, Yong ;
Cai, K. F. ;
Chen, Song ;
Cizek, Pavel ;
Lin, Tong .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (08) :5735-5743
[6]   A Triboelectric Generator Based on Checker-Like Interdigital Electrodes with a Sandwiched PET Thin Film for Harvesting Sliding Energy in All Directions [J].
Guo, Hengyu ;
Leng, Qiang ;
He, Xianming ;
Wang, Mingjun ;
Chen, Jie ;
Hu, Chenguo ;
Xi, Yi .
ADVANCED ENERGY MATERIALS, 2015, 5 (01)
[7]   A nanogenerator for harvesting airflow energy and light energy [J].
Guo, Hengyu ;
He, Xianming ;
Zhong, Junwen ;
Zhong, Qize ;
Leng, Qiang ;
Hu, Chenguo ;
Chen, Jie ;
Tian, Li ;
Xi, Yi ;
Zhou, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (07) :2079-2087
[8]   TRIBOELECTRICITY IN POLYMERS [J].
HENNIKER, J .
NATURE, 1962, 196 (4853) :474-&
[9]   Hybrid-Type Quantum-Dot Cosensitized ZnO Nanowire Solar Cell with Enhanced Visible-Light Harvesting [J].
Kim, Heejin ;
Jeong, Hyuncheol ;
An, Tae Kyu ;
Park, Chan Eon ;
Yong, Kijung .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (02) :268-275
[10]   Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor [J].
Lin, Long ;
Wang, Sihong ;
Niu, Simiao ;
Liu, Chang ;
Xie, Yannan ;
Wang, Zhong Lin .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (04) :3031-3038