THE WITTEN-RESHETIKHIN-TURAEV REPRESENTATION OF THE KAUFFMAN BRACKET SKEIN ALGEBRA

被引:4
作者
Bonahon, Francis [1 ]
Wong, Helen [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Carleton Coll, Dept Math, Northfield, MN 55057 USA
基金
美国国家科学基金会;
关键词
MAPPING CLASS-GROUPS; LINK POLYNOMIALS; INVARIANTS; VARIETIES; SURFACES;
D O I
10.1090/proc/12927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For A a primitive 2N-root of unity with N odd, the Witten-Reshetikhin-Turaev topological quantum field theory provides a representation of the Kauffman bracket skein algebra of a closed surface. We show that this representation is irreducible, and we compute its classical shadow in the sense of an earlier work of the authors.
引用
收藏
页码:2711 / 2724
页数:14
相关论文
共 26 条
[21]   SKEINS AND MAPPING CLASS-GROUPS [J].
ROBERTS, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 :53-77
[22]   Irreducibility of some quantum representations of mapping class groups [J].
Roberts, J .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (05) :763-767
[23]  
Turaev V. G., 1990, J. Soviet Math, V52, P2799
[24]  
TURAEV VG, 1991, ANN SCI ECOLE NORM S, V24, P635
[25]   QUANTUM-FIELD THEORY AND THE JONES POLYNOMIAL [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :351-399
[26]  
[No title captured]