THE WITTEN-RESHETIKHIN-TURAEV REPRESENTATION OF THE KAUFFMAN BRACKET SKEIN ALGEBRA

被引:4
作者
Bonahon, Francis [1 ]
Wong, Helen [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Carleton Coll, Dept Math, Northfield, MN 55057 USA
基金
美国国家科学基金会;
关键词
MAPPING CLASS-GROUPS; LINK POLYNOMIALS; INVARIANTS; VARIETIES; SURFACES;
D O I
10.1090/proc/12927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For A a primitive 2N-root of unity with N odd, the Witten-Reshetikhin-Turaev topological quantum field theory provides a representation of the Kauffman bracket skein algebra of a closed surface. We show that this representation is irreducible, and we compute its classical shadow in the sense of an earlier work of the authors.
引用
收藏
页码:2711 / 2724
页数:14
相关论文
共 26 条
[1]  
[Anonymous], COMM MATH PHYS
[2]   3-MANIFOLD INVARIANTS DERIVED FROM THE KAUFFMAN BRACKET [J].
BLANCHET, C ;
HABEGGER, N ;
MASBAUM, G ;
VOGEL, P .
TOPOLOGY, 1992, 31 (04) :685-699
[3]   Topological quantum field theories derived from the Kauffman bracket [J].
Blanchet, C ;
Habegger, N ;
Masbaum, G ;
Vogel, P .
TOPOLOGY, 1995, 34 (04) :883-927
[4]  
Bonahon F., 2015, PREPRINT
[5]  
Bonahon F., 2012, PREPRINT
[6]  
Bonahon F., 2012, TO APPEAR IN INVENTI
[7]  
Bonahon F, 2011, CONTEMP MATH, V560, P179
[8]   The Kauffman bracket skein as an algebra of observables [J].
Bullock, D ;
Frohman, C ;
Kania-Bartoszynska, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (08) :2479-2485
[9]   Understanding the Kauffman bracket skein module [J].
Bullock, D ;
Frohman, C ;
Kania-Bartoszynska, J .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (03) :265-277
[10]   HECKE ALGEBRA REPRESENTATIONS OF BRAID-GROUPS AND LINK POLYNOMIALS [J].
JONES, VFR .
ANNALS OF MATHEMATICS, 1987, 126 (02) :335-388