Separation of multiple scatterers in NEWS experiments using Independent Component Analysis (ICA)

被引:0
|
作者
Vanaverbeke, S. [1 ]
Van Den Abeele, K. [1 ]
Nion, D. [1 ]
De lathauwer, L. [1 ]
机构
[1] Katholieke Univ Leuven Campus Kortrijk, Wave Propagat & Signal Proc Res Grp, B-8500 Kortrijk, Belgium
关键词
nonlinear elasticity; microdamage imaging; independent component analysis; tomography;
D O I
10.1016/j.phpro.2010.01.007
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonlinear elastic wave spectroscopy combined with imaging techniques such as acoustic time reversal (NEWS-TR) or sparse array tomography is a promising new methodology for detecting microdamage at an early stage. When dealing with structures which could potentially contain many point-like nonlinear scatterers, there is a need to develop techniques for separately imaging the defects using a distributed sensor network which can be used either in time-reversal imaging processes or for tomographic imaging.. In this contribution, we discuss the application of Independent Component Analysis (ICA) methods to solve the problem of separating multiple nonlinear scatterers distributed throughout a sample, either by combining ICA with time reversal or by using ICA in conjunction with a tomographic experiment. We illustrate the procedure for ICA based tomographic imaging of multiple scatterers in an infinite medium.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [1] Separation of deterministic signals using independent component analysis (ICA)
    Ehsan Forootan
    Jürgen Kusche
    Studia Geophysica et Geodaetica, 2013, 57 : 17 - 26
  • [2] Separation of deterministic signals using independent component analysis (ICA)
    Forootan, Ehsan
    Kusche, Juergen
    STUDIA GEOPHYSICA ET GEODAETICA, 2013, 57 (01) : 17 - 26
  • [3] An Fmri Validation Study Using Independent Component Analysis ( ICA)
    Schoepf, Veronika
    Kopietz, Rainer
    Albrecht, Jessica
    Kleemann, Anna Maria
    Brueckmann, Hartmut
    Wiesmann, Martin
    CHEMICAL SENSES, 2008, 33 (08) : S112 - S112
  • [4] Independent Component Analysis (ICA) Using Pearsonian Density Function
    Mandal, Abhijit
    Chakraborty, Arnab
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 74 - +
  • [5] Independent component analysis (ICA) using wavelet subband orthogonality
    Szu, H
    Hsu, C
    Yamakawa, T
    WAVELET APPLICATIONS V, 1998, 3391 : 180 - 193
  • [6] Pulse Separation Using Independent Component Analysis
    Lin, Jaron
    Juliano, Jordan
    Erdogan, Alex
    George, Kiran
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 946 - 950
  • [7] INDEPENDENT COMPONENT ANALYSIS (ICA) FOR TEXTURE CLASSIFICATION
    Al Nadi, Dia Abu
    Mansour, Ayman M.
    2008 5TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES, VOLS 1 AND 2, 2008, : 87 - 91
  • [8] A novel measure for independent component analysis (ICA)
    Xu, DX
    Principe, JC
    Fisher, J
    Wu, HC
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1161 - 1164
  • [9] Separation And Recognition of Multiple PQ Disturbances Using Independent Component Analysis And Neural Networks
    Lima, Marcelo A. A.
    Ferreira, Danton D.
    Cerqueira, Augusto S.
    Duque, Carlos A.
    Ribeiro, Moises V.
    de Seixas, Jose M.
    2008 13TH INTERNATIONAL CONFERENCE ON HARMONICS AND QUALITY OF POWER, VOLS 1 AND 2, 2008, : 569 - +
  • [10] Separation of Respiratory Signatures or Multiple Subjects Using Independent Component Analysis with the JADE Algorithm
    Islam, Shekh M. M.
    Yavari, Ehsan
    Rahman, Ashikur
    Lubecke, Victor M.
    Boric-Lubecke, Olga
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 1234 - 1237