Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter

被引:80
作者
Freiling, G. [1 ]
Yurko, V. A. [2 ]
机构
[1] Univ Duisburg Essen, Fac Math, Campus Duisburg,Forsthausweg 2, D-47057 Duisburg, Germany
[2] Saratov Univ, Dept Math, Saratov 410012, Russia
关键词
EIGENVALUE PROBLEMS; EIGENPARAMETER;
D O I
10.1088/0266-5611/26/5/055003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sturm-Liouville differential operators in a finite interval with boundary conditions depending polynomially on the spectral parameter are studied. We establish the properties of the spectral characteristics and investigate three inverse problems of recovering the operator either from the so-called Weyl function, or from discrete spectral data or from two spectra. For these inverse problems we provide procedures for constructing their solutions by the method of spectral mappings.
引用
收藏
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 1977, OPERATORYI SHTURMA L
[2]  
BENEDEK A, 1980, NOTAS ALGEBRA ANALIS, P1
[3]   Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) :246-261
[4]   Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) :147-168
[5]   A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems [J].
Browne, PJ ;
Sleeman, BD .
INVERSE PROBLEMS, 1997, 13 (06) :1453-1462
[6]   A uniqueness theorem for the boundary value problems with non-linear dependence on the spectral parameter in the boundary conditions [J].
Chernozhukova, A. ;
Freiling, G. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (06) :777-785
[7]  
Chugunova MV, 2001, OPER THEOR, V123, P187
[8]  
Coddington E. A., 1955, THEORY ORDINARY DIFF
[9]  
Collatz L., 1963, EIGENWERTAUFGABEN TE
[10]  
Conway JB., 1995, Functions of One Complex Variable, VI